Spaces:
Runtime error
Runtime error
from backend.latmathcher.plots import plot_atom_list | |
from backend.latmathcher import atoms_to_greed, generate_xyz_text | |
from backend.latmathcher import PipelineLatMatch | |
from backend.db_utils.utils import structure_ato_list | |
from backend.db_utils.parse_c2db import from_c2db_structure, read_c2db_json | |
from backend.db_utils.structure_database import DBInstance | |
from ase.io import read | |
from CifFile import ReadCif | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
import os | |
import shutil | |
import numpy as np | |
import periodictable | |
import ast | |
def create_directory(directory_path): | |
if not os.path.exists(directory_path): | |
os.makedirs(directory_path) | |
print(f"Directory '{directory_path}' created successfully.") | |
else: | |
print(f"Directory '{directory_path}' already exists.") | |
def get_atomic_number(element_symbol): | |
# Find the element in the periodic table and return its atomic number | |
element = getattr(periodictable, element_symbol) | |
return element.number | |
def compute_supercell_a(file_material_a, file_material_b,inter_distance , max_angle, max_strain): | |
# | |
ip = "test_ip" # get_client_ip(response) | |
db_latmatcher_path = "DB/LatMatcher" | |
create_directory("DB") | |
create_directory("DB/LatMatcher") | |
new_directory = db_latmatcher_path + "/{}__ma{}__ms{}_on{}".format(ip, max_angle, max_strain, | |
len(os.listdir(db_latmatcher_path))) | |
create_directory(new_directory) | |
path_to_move = new_directory | |
file1 = process_file(file_material_a, path_to_move+"/") | |
file2 = process_file(file_material_b, path_to_move+"/") | |
file_source_a="."+file1.split(".")[-1] | |
file_source_b = "."+file2.split(".")[-1] | |
print("fa, fb:",file_source_a, file_source_b) | |
if file_source_a == "c2db.json": | |
A_structure = from_c2db_structure(read_c2db_json(file1)) | |
A_cell=A_structure["cell"] | |
if file_source_b == "c2db.json": | |
B_structure = from_c2db_structure(read_c2db_json(file2)) | |
B_cell=B_structure["cell"] | |
if file_source_a == ".xyz": | |
A_structure = extract_from_xyz(file1) | |
A_cell = A_structure["cell"].T | |
if file_source_b == ".xyz": | |
B_structure = extract_from_xyz(file2) | |
B_cell=B_structure["cell"].T | |
if file_source_a == "bespoke.json": | |
A_structure = extract_from_bespoke(file1) | |
A_cell = A_structure["cell"] | |
if file_source_b == "bespoke.json": | |
B_structure = extract_from_bespoke(file2) | |
B_cell=B_structure["cell"] | |
inter_distance=[0,0,inter_distance] | |
super_xyz, min_supercel, new_structure= compute_supercell(A_cell, B_cell, A_structure, B_structure, inter_distance, | |
max_angle, max_strain ) | |
rez=min_supercel.rez | |
# Write the new file: | |
name = "solution" | |
file12 = path_to_move + "/" + name + ".xyz" | |
xyz_content = f"{len(super_xyz)}\n" | |
xyz_content +="Lattice=\"{}\"".format(np.array2string(new_structure['lattice_vectors'], | |
separator=', ', | |
max_line_width=np.inf).replace("\n"," ").replace("[","").replace("]","").replace(",",""))+" pbc=\"T T F\""+"\n" | |
xyz_content += "\n".join([f"{atom[0]} {' '.join(map(str, atom[1]))}" for atom in super_xyz]) | |
# Write the content to a file | |
with open(file12, 'w') as file: | |
file.write(xyz_content) | |
atoms= atoms_to_greed(super_xyz, lat_v=min_supercel.sc_vec3, dim=(3,3,0)) | |
xyz_content_dd=generate_xyz_text(atoms) | |
# plot_atom_list(atoms, marker=".") | |
plot=plot_supercel(super_xyz, min_supercel) | |
return file12, str(rez[2]), str((rez[0], rez[1])),plot, xyz_content_dd | |
def compute_supercell_b(): | |
pass | |
def compute_supercell(A_cell, B_cell,A_structure,B_structure,inter_distance,min_angle, max_strain): | |
min_angle=min_angle/180*np.pi | |
min_supercel = PipelineLatMatch(A_cell, B_cell, Aatoms3D=structure_ato_list(A_structure), | |
Batoms3D=structure_ato_list(B_structure), dim=(10, 10), optimize_angle=True, | |
optimize_strain=True,min_angle=min_angle, max_strain=max_strain) | |
new_structure = min_supercel.get_new_structure(inter_distance) | |
super_xyz = structure_ato_list(new_structure) | |
return super_xyz, min_supercel, new_structure | |
def plot_supercel(super_xyz, min_supercel): | |
fig = plt.figure() | |
atoms = atoms_to_greed(super_xyz, lat_v=min_supercel.sc_vec3, dim=(10, 10, 0)) | |
plot_atom_list(atoms, marker=".") | |
x = [0.0, min_supercel.sc_vec3[0][0], min_supercel.sc_vec3[0][0] + min_supercel.sc_vec3[0][1], | |
min_supercel.sc_vec3[0][1], 0.0] | |
y = [0.0, min_supercel.sc_vec3[1][0], min_supercel.sc_vec3[1][0] + min_supercel.sc_vec3[1][1], | |
min_supercel.sc_vec3[1][1], 0.0] | |
plt.gca().add_patch(patches.Polygon(xy=list(zip(x, y)), fill=True, alpha=0.4, color="green")) | |
plt.ylim(min(y)*3+1, max(y)*3+1) | |
plt.xlim(min(x)*3+1, max(x)*3+1) | |
# super_a = [super_xyz[i] for i in range(len(new_structure["host_guest"])) if | |
# new_structure["host_guest"][i] == "host"] | |
# super_b = [super_xyz[i] for i in range(len(new_structure["host_guest"])) if | |
# new_structure["host_guest"][i] == "guest"] | |
# | |
# atoms = atoms_to_greed(super_a, lat_v=min_supercel.sc_vec3, dim=(10, 10, 0)) | |
# plot_atom_list(atoms, marker=".") | |
# atoms = atoms_to_greed(super_b, lat_v=min_supercel.sc_vec3, dim=(10, 10, 0)) | |
# plot_atom_list(atoms, marker="*") | |
# | |
# x = [0.0, min_supercel.sc_vec3[0][0], min_supercel.sc_vec3[0][0] + min_supercel.sc_vec3[0][1], | |
# min_supercel.sc_vec3[0][1], 0.0] | |
# y = [0.0, min_supercel.sc_vec3[1][0], min_supercel.sc_vec3[1][0] + min_supercel.sc_vec3[1][1], | |
# min_supercel.sc_vec3[1][1], 0.0] | |
# plt.gca().add_patch(patches.Polygon(xy=list(zip(x, y)), fill=True, alpha=0.4, color="green")) | |
# plt.ylim(-15, 15) | |
# plt.xlim(-15, 15) | |
return fig | |
# Utility tools for working with files | |
def file_json(file_path): | |
file = file_path.split("/")[-1] | |
ext = file.split(".")[-1] | |
if ext == "json": | |
return True | |
else: | |
return False | |
def get_file_name(file_path): | |
file = file_path.split("/")[-1] | |
file_name = file.split(".")[-2] | |
return file_name | |
def process_file(fileobj, path_to_move): | |
file_path = path_to_move + os.path.basename(fileobj.name) | |
shutil.copyfile(fileobj.name, file_path) | |
return file_path | |
def extract_from_xyz(file): | |
structure={'cell':[], 'atoms':[], | |
'positions':[], | |
"pbc":[ True, True, False] } | |
atoms = read(file) | |
lattice_vectors = atoms.cell | |
atom_symbols = atoms.get_chemical_symbols() | |
positions = atoms.get_positions() | |
structure["cell"] = np.array([[lattice_vectors[0][0], lattice_vectors[0][1], 0], | |
[lattice_vectors[1][0], lattice_vectors[1][1], 0], | |
[0,0,1]]) | |
structure['atoms'] = [get_atomic_number(element_symbol) for element_symbol in atom_symbols] | |
structure['positions'] = positions | |
print(structure) | |
return structure | |
def extract_from_bespoke(file): | |
read_element = DBInstance().from_json_file(file) | |
structure = read_element.structure | |
structure["cell"]=np.array(structure["cell"]) | |
return structure |