from ultralytics import YOLO import numpy as np import matplotlib.pyplot as plt import gradio as gr import cv2 import torch model = YOLO('checkpoints/FastSAM.pt') # load a custom model def fast_process(annotations, image): fig = plt.figure(figsize=(10, 10)) plt.imshow(image) #original_h = image.shape[0] #original_w = image.shape[1] #for i, mask in enumerate(annotations): # mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) # annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) fast_show_mask(annotations, plt.gca()) #target_height=original_h, #target_width=original_w) plt.axis('off') plt.tight_layout() return fig # CPU post process def fast_show_mask(annotation, ax): msak_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] # 将annotation 按照面积 排序 areas = np.sum(annotation, axis=(1, 2)) sorted_indices = np.argsort(areas)[::1] annotation = annotation[sorted_indices] index = (annotation != 0).argmax(axis=0) color = np.random.random((msak_sum, 1, 1, 3)) transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6 visual = np.concatenate([color, transparency], axis=-1) mask_image = np.expand_dims(annotation, -1) * visual show = np.zeros((height, weight, 4)) h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij') indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) # 使用向量化索引更新show的值 show[h_indices, w_indices, :] = mask_image[indices] #if retinamask == False: # show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST) ax.imshow(show) # post_process(results[0].masks, Image.open("../data/cake.png")) def predict(input, input_size): input_size = int(input_size) # 确保 imgsz 是整数 results = model(input, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) pil_image = fast_process(annotations=results[0].masks.data, image=input) return pil_image # inp = 'assets/sa_192.jpg' # results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) # results = format_results(results[0], 100) # post_process(annotations=results, image_path=inp) demo = gr.Interface(fn=predict, inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[512, 800, 1024], default=1024)], outputs=['plot'], examples=[["assets/sa_8776.jpg", 1024]], # ["assets/sa_1309.jpg", 1024]], # examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], # ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], # ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], # ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], ) demo.launch() """ from ultralytics import YOLO import numpy as np import matplotlib.pyplot as plt import gradio as gr import torch model = YOLO('checkpoints/FastSAM.pt') # load a custom model def format_results(result,filter = 0): annotations = [] n = len(result.masks.data) for i in range(n): annotation = {} mask = result.masks.data[i] == 1.0 if torch.sum(mask) < filter: continue annotation['id'] = i annotation['segmentation'] = mask.cpu().numpy() annotation['bbox'] = result.boxes.data[i] annotation['score'] = result.boxes.conf[i] annotation['area'] = annotation['segmentation'].sum() annotations.append(annotation) return annotations def show_mask(annotation, ax, random_color=True, bbox=None, points=None): if random_color : # random mask color color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) if type(annotation) == dict: annotation = annotation['segmentation'] mask = annotation h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) # draw box if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) # draw point if points is not None: ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g') ax.imshow(mask_image) return mask_image def post_process(annotations, image, mask_random_color=True, bbox=None, points=None): fig = plt.figure(figsize=(10, 10)) plt.imshow(image) for i, mask in enumerate(annotations): show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points) plt.axis('off') plt.tight_layout() return fig # post_process(results[0].masks, Image.open("../data/cake.png")) def predict(input, input_size): input_size = int(input_size) # 确保 imgsz 是整数 results = model(input, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) results = format_results(results[0], 100) results.sort(key=lambda x: x['area'], reverse=True) pil_image = post_process(annotations=results, image=input) return pil_image # inp = 'assets/sa_192.jpg' # results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) # results = format_results(results[0], 100) # post_process(annotations=results, image_path=inp) demo = gr.Interface(fn=predict, inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[512, 800, 1024], default=1024)], outputs=['plot'], examples=[["assets/sa_8776.jpg", 1024]], # ["assets/sa_1309.jpg", 1024]], # examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], # ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], # ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], # ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], ) demo.launch() """