Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://huggingface.co/spaces/An-619/FastSAM into main
Browse files- app.py +288 -288
- app_debug.py +0 -287
app.py
CHANGED
@@ -1,288 +1,288 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
from tools import fast_process, format_results, box_prompt, point_prompt
|
5 |
-
from PIL import ImageDraw
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
# Load the pre-trained model
|
9 |
-
model = YOLO('checkpoints/FastSAM.pt')
|
10 |
-
|
11 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
-
|
13 |
-
# Description
|
14 |
-
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
15 |
-
|
16 |
-
news = """ # 📖 News
|
17 |
-
|
18 |
-
🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
|
19 |
-
|
20 |
-
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
|
21 |
-
|
22 |
-
"""
|
23 |
-
|
24 |
-
description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
|
25 |
-
|
26 |
-
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
27 |
-
|
28 |
-
⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
29 |
-
|
30 |
-
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
31 |
-
|
32 |
-
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
|
33 |
-
|
34 |
-
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
|
35 |
-
|
36 |
-
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
|
37 |
-
|
38 |
-
"""
|
39 |
-
|
40 |
-
description_p = """ # 🎯 Instructions for points mode
|
41 |
-
This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
|
42 |
-
|
43 |
-
1. Upload an image or choose an example.
|
44 |
-
|
45 |
-
2. Choose the point label ('Add mask' means a positive point. 'Remove' Area means a negative point that is not segmented).
|
46 |
-
|
47 |
-
3. Add points one by one on the image.
|
48 |
-
|
49 |
-
4. Click the 'Segemnt with points prompt' button to get the segmentation results.
|
50 |
-
|
51 |
-
**5. If you get Error, click the 'Clear points' button and try again may help.**
|
52 |
-
|
53 |
-
"""
|
54 |
-
|
55 |
-
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
|
56 |
-
["assets/sa_561.jpg"], ["assets/sa_192.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
|
57 |
-
|
58 |
-
default_example = examples[0]
|
59 |
-
|
60 |
-
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
61 |
-
|
62 |
-
|
63 |
-
def segment_everything(
|
64 |
-
input,
|
65 |
-
input_size=1024,
|
66 |
-
iou_threshold=0.7,
|
67 |
-
conf_threshold=0.25,
|
68 |
-
better_quality=False,
|
69 |
-
withContours=True,
|
70 |
-
use_retina=True,
|
71 |
-
mask_random_color=True,
|
72 |
-
):
|
73 |
-
input_size = int(input_size) # 确保 imgsz 是整数
|
74 |
-
|
75 |
-
# Thanks for the suggestion by hysts in HuggingFace.
|
76 |
-
w, h = input.size
|
77 |
-
scale = input_size / max(w, h)
|
78 |
-
new_w = int(w * scale)
|
79 |
-
new_h = int(h * scale)
|
80 |
-
input = input.resize((new_w, new_h))
|
81 |
-
|
82 |
-
results = model(input,
|
83 |
-
device=device,
|
84 |
-
retina_masks=True,
|
85 |
-
iou=iou_threshold,
|
86 |
-
conf=conf_threshold,
|
87 |
-
imgsz=input_size,)
|
88 |
-
|
89 |
-
fig = fast_process(annotations=results[0].masks.data,
|
90 |
-
image=input,
|
91 |
-
device=device,
|
92 |
-
scale=(1024 // input_size),
|
93 |
-
better_quality=better_quality,
|
94 |
-
mask_random_color=mask_random_color,
|
95 |
-
bbox=None,
|
96 |
-
use_retina=use_retina,
|
97 |
-
withContours=withContours,)
|
98 |
-
return fig
|
99 |
-
|
100 |
-
def segment_with_points(
|
101 |
-
input,
|
102 |
-
input_size=1024,
|
103 |
-
iou_threshold=0.7,
|
104 |
-
conf_threshold=0.25,
|
105 |
-
better_quality=False,
|
106 |
-
withContours=True,
|
107 |
-
mask_random_color=True,
|
108 |
-
use_retina=True,
|
109 |
-
):
|
110 |
-
global global_points
|
111 |
-
global global_point_label
|
112 |
-
|
113 |
-
input_size = int(input_size) # 确保 imgsz 是整数
|
114 |
-
# Thanks for the suggestion by hysts in HuggingFace.
|
115 |
-
w, h = input.size
|
116 |
-
scale = input_size / max(w, h)
|
117 |
-
new_w = int(w * scale)
|
118 |
-
new_h = int(h * scale)
|
119 |
-
input = input.resize((new_w, new_h))
|
120 |
-
|
121 |
-
scaled_points = [[int(x * scale) for x in point] for point in global_points]
|
122 |
-
|
123 |
-
results = model(input,
|
124 |
-
device=device,
|
125 |
-
retina_masks=True,
|
126 |
-
iou=iou_threshold,
|
127 |
-
conf=conf_threshold,
|
128 |
-
imgsz=input_size,)
|
129 |
-
|
130 |
-
results = format_results(results[0], 0)
|
131 |
-
|
132 |
-
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
133 |
-
annotations = np.array([annotations])
|
134 |
-
|
135 |
-
fig = fast_process(annotations=annotations,
|
136 |
-
image=input,
|
137 |
-
device=device,
|
138 |
-
scale=(1024 // input_size),
|
139 |
-
better_quality=better_quality,
|
140 |
-
mask_random_color=mask_random_color,
|
141 |
-
bbox=None,
|
142 |
-
use_retina=use_retina,
|
143 |
-
withContours=withContours,)
|
144 |
-
global_points = []
|
145 |
-
global_point_label = []
|
146 |
-
return fig, None
|
147 |
-
|
148 |
-
def get_points_with_draw(image, label, evt: gr.SelectData):
|
149 |
-
x, y = evt.index[0], evt.index[1]
|
150 |
-
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
151 |
-
global global_points
|
152 |
-
global global_point_label
|
153 |
-
print((x, y))
|
154 |
-
global_points.append([x, y])
|
155 |
-
global_point_label.append(1 if label == 'Add Mask' else 0)
|
156 |
-
|
157 |
-
# 创建一个可以在图像上绘图的对象
|
158 |
-
draw = ImageDraw.Draw(image)
|
159 |
-
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
160 |
-
return image
|
161 |
-
|
162 |
-
|
163 |
-
# input_size=1024
|
164 |
-
# high_quality_visual=True
|
165 |
-
# inp = 'assets/sa_192.jpg'
|
166 |
-
# input = Image.open(inp)
|
167 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
168 |
-
# input_size = int(input_size) # 确保 imgsz 是整数
|
169 |
-
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
170 |
-
# pil_image = fast_process(annotations=results[0].masks.data,
|
171 |
-
# image=input, high_quality=high_quality_visual, device=device)
|
172 |
-
|
173 |
-
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
|
174 |
-
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
|
175 |
-
|
176 |
-
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
177 |
-
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
|
178 |
-
|
179 |
-
global_points = []
|
180 |
-
global_point_label = [] # TODO:Clear points each image
|
181 |
-
|
182 |
-
input_size_slider = gr.components.Slider(minimum=512,
|
183 |
-
maximum=1024,
|
184 |
-
value=1024,
|
185 |
-
step=64,
|
186 |
-
label='Input_size',
|
187 |
-
info='Our model was trained on a size of 1024')
|
188 |
-
|
189 |
-
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
190 |
-
with gr.Row():
|
191 |
-
with gr.Column(scale=1):
|
192 |
-
# Title
|
193 |
-
gr.Markdown(title)
|
194 |
-
|
195 |
-
with gr.Column(scale=1):
|
196 |
-
# News
|
197 |
-
gr.Markdown(news)
|
198 |
-
|
199 |
-
with gr.Tab("Everything mode"):
|
200 |
-
# Images
|
201 |
-
with gr.Row(variant="panel"):
|
202 |
-
with gr.Column(scale=1):
|
203 |
-
cond_img_e.render()
|
204 |
-
|
205 |
-
with gr.Column(scale=1):
|
206 |
-
segm_img_e.render()
|
207 |
-
|
208 |
-
# Submit & Clear
|
209 |
-
with gr.Row():
|
210 |
-
with gr.Column():
|
211 |
-
input_size_slider.render()
|
212 |
-
|
213 |
-
with gr.Row():
|
214 |
-
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
|
215 |
-
|
216 |
-
with gr.Column():
|
217 |
-
segment_btn_e = gr.Button("Segment Everything", variant='primary')
|
218 |
-
clear_btn_e = gr.Button("Clear", variant="secondary")
|
219 |
-
|
220 |
-
gr.Markdown("Try some of the examples below ⬇️")
|
221 |
-
gr.Examples(examples=examples,
|
222 |
-
inputs=[cond_img_e],
|
223 |
-
outputs=segm_img_e,
|
224 |
-
fn=segment_everything,
|
225 |
-
cache_examples=True,
|
226 |
-
examples_per_page=4)
|
227 |
-
|
228 |
-
with gr.Column():
|
229 |
-
with gr.Accordion("Advanced options", open=False):
|
230 |
-
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
231 |
-
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
232 |
-
with gr.Row():
|
233 |
-
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
234 |
-
with gr.Column():
|
235 |
-
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
236 |
-
|
237 |
-
# Description
|
238 |
-
gr.Markdown(description_e)
|
239 |
-
|
240 |
-
with gr.Tab("Points mode"):
|
241 |
-
# Images
|
242 |
-
with gr.Row(variant="panel"):
|
243 |
-
with gr.Column(scale=1):
|
244 |
-
cond_img_p.render()
|
245 |
-
|
246 |
-
with gr.Column(scale=1):
|
247 |
-
segm_img_p.render()
|
248 |
-
|
249 |
-
# Submit & Clear
|
250 |
-
with gr.Row():
|
251 |
-
with gr.Column():
|
252 |
-
with gr.Row():
|
253 |
-
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)")
|
254 |
-
|
255 |
-
with gr.Column():
|
256 |
-
segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
|
257 |
-
clear_btn_p = gr.Button("Clear points", variant='secondary')
|
258 |
-
|
259 |
-
gr.Markdown("Try some of the examples below ⬇️")
|
260 |
-
gr.Examples(examples=examples,
|
261 |
-
inputs=[cond_img_p],
|
262 |
-
outputs=segm_img_p,
|
263 |
-
fn=segment_with_points,
|
264 |
-
# cache_examples=True,
|
265 |
-
examples_per_page=4)
|
266 |
-
|
267 |
-
with gr.Column():
|
268 |
-
# Description
|
269 |
-
gr.Markdown(description_p)
|
270 |
-
|
271 |
-
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
272 |
-
|
273 |
-
segment_btn_e.click(segment_everything,
|
274 |
-
inputs=[cond_img_e, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check, retina_check],
|
275 |
-
outputs=segm_img_e)
|
276 |
-
|
277 |
-
segment_btn_p.click(segment_with_points,
|
278 |
-
inputs=[cond_img_p],
|
279 |
-
outputs=[segm_img_p, cond_img_p])
|
280 |
-
|
281 |
-
def clear():
|
282 |
-
return None, None
|
283 |
-
|
284 |
-
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
285 |
-
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
286 |
-
|
287 |
-
demo.queue()
|
288 |
-
demo.launch()
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from tools import fast_process, format_results, box_prompt, point_prompt
|
5 |
+
from PIL import ImageDraw
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Load the pre-trained model
|
9 |
+
model = YOLO('checkpoints/FastSAM.pt')
|
10 |
+
|
11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
|
13 |
+
# Description
|
14 |
+
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
15 |
+
|
16 |
+
news = """ # 📖 News
|
17 |
+
|
18 |
+
🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
|
19 |
+
|
20 |
+
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
|
21 |
+
|
22 |
+
"""
|
23 |
+
|
24 |
+
description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
|
25 |
+
|
26 |
+
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
27 |
+
|
28 |
+
⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
29 |
+
|
30 |
+
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
31 |
+
|
32 |
+
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
|
33 |
+
|
34 |
+
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
|
35 |
+
|
36 |
+
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
|
37 |
+
|
38 |
+
"""
|
39 |
+
|
40 |
+
description_p = """ # 🎯 Instructions for points mode
|
41 |
+
This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
|
42 |
+
|
43 |
+
1. Upload an image or choose an example.
|
44 |
+
|
45 |
+
2. Choose the point label ('Add mask' means a positive point. 'Remove' Area means a negative point that is not segmented).
|
46 |
+
|
47 |
+
3. Add points one by one on the image.
|
48 |
+
|
49 |
+
4. Click the 'Segemnt with points prompt' button to get the segmentation results.
|
50 |
+
|
51 |
+
**5. If you get Error, click the 'Clear points' button and try again may help.**
|
52 |
+
|
53 |
+
"""
|
54 |
+
|
55 |
+
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
|
56 |
+
["assets/sa_561.jpg"], ["assets/sa_192.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
|
57 |
+
|
58 |
+
default_example = examples[0]
|
59 |
+
|
60 |
+
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
61 |
+
|
62 |
+
|
63 |
+
def segment_everything(
|
64 |
+
input,
|
65 |
+
input_size=1024,
|
66 |
+
iou_threshold=0.7,
|
67 |
+
conf_threshold=0.25,
|
68 |
+
better_quality=False,
|
69 |
+
withContours=True,
|
70 |
+
use_retina=True,
|
71 |
+
mask_random_color=True,
|
72 |
+
):
|
73 |
+
input_size = int(input_size) # 确保 imgsz 是整数
|
74 |
+
|
75 |
+
# Thanks for the suggestion by hysts in HuggingFace.
|
76 |
+
w, h = input.size
|
77 |
+
scale = input_size / max(w, h)
|
78 |
+
new_w = int(w * scale)
|
79 |
+
new_h = int(h * scale)
|
80 |
+
input = input.resize((new_w, new_h))
|
81 |
+
|
82 |
+
results = model(input,
|
83 |
+
device=device,
|
84 |
+
retina_masks=True,
|
85 |
+
iou=iou_threshold,
|
86 |
+
conf=conf_threshold,
|
87 |
+
imgsz=input_size,)
|
88 |
+
|
89 |
+
fig = fast_process(annotations=results[0].masks.data,
|
90 |
+
image=input,
|
91 |
+
device=device,
|
92 |
+
scale=(1024 // input_size),
|
93 |
+
better_quality=better_quality,
|
94 |
+
mask_random_color=mask_random_color,
|
95 |
+
bbox=None,
|
96 |
+
use_retina=use_retina,
|
97 |
+
withContours=withContours,)
|
98 |
+
return fig
|
99 |
+
|
100 |
+
def segment_with_points(
|
101 |
+
input,
|
102 |
+
input_size=1024,
|
103 |
+
iou_threshold=0.7,
|
104 |
+
conf_threshold=0.25,
|
105 |
+
better_quality=False,
|
106 |
+
withContours=True,
|
107 |
+
mask_random_color=True,
|
108 |
+
use_retina=True,
|
109 |
+
):
|
110 |
+
global global_points
|
111 |
+
global global_point_label
|
112 |
+
|
113 |
+
input_size = int(input_size) # 确保 imgsz 是整数
|
114 |
+
# Thanks for the suggestion by hysts in HuggingFace.
|
115 |
+
w, h = input.size
|
116 |
+
scale = input_size / max(w, h)
|
117 |
+
new_w = int(w * scale)
|
118 |
+
new_h = int(h * scale)
|
119 |
+
input = input.resize((new_w, new_h))
|
120 |
+
|
121 |
+
scaled_points = [[int(x * scale) for x in point] for point in global_points]
|
122 |
+
|
123 |
+
results = model(input,
|
124 |
+
device=device,
|
125 |
+
retina_masks=True,
|
126 |
+
iou=iou_threshold,
|
127 |
+
conf=conf_threshold,
|
128 |
+
imgsz=input_size,)
|
129 |
+
|
130 |
+
results = format_results(results[0], 0)
|
131 |
+
|
132 |
+
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
133 |
+
annotations = np.array([annotations])
|
134 |
+
|
135 |
+
fig = fast_process(annotations=annotations,
|
136 |
+
image=input,
|
137 |
+
device=device,
|
138 |
+
scale=(1024 // input_size),
|
139 |
+
better_quality=better_quality,
|
140 |
+
mask_random_color=mask_random_color,
|
141 |
+
bbox=None,
|
142 |
+
use_retina=use_retina,
|
143 |
+
withContours=withContours,)
|
144 |
+
global_points = []
|
145 |
+
global_point_label = []
|
146 |
+
return fig, None
|
147 |
+
|
148 |
+
def get_points_with_draw(image, label, evt: gr.SelectData):
|
149 |
+
x, y = evt.index[0], evt.index[1]
|
150 |
+
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
151 |
+
global global_points
|
152 |
+
global global_point_label
|
153 |
+
print((x, y))
|
154 |
+
global_points.append([x, y])
|
155 |
+
global_point_label.append(1 if label == 'Add Mask' else 0)
|
156 |
+
|
157 |
+
# 创建一个可以在图像上绘图的对象
|
158 |
+
draw = ImageDraw.Draw(image)
|
159 |
+
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
160 |
+
return image
|
161 |
+
|
162 |
+
|
163 |
+
# input_size=1024
|
164 |
+
# high_quality_visual=True
|
165 |
+
# inp = 'assets/sa_192.jpg'
|
166 |
+
# input = Image.open(inp)
|
167 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
168 |
+
# input_size = int(input_size) # 确保 imgsz 是整数
|
169 |
+
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
170 |
+
# pil_image = fast_process(annotations=results[0].masks.data,
|
171 |
+
# image=input, high_quality=high_quality_visual, device=device)
|
172 |
+
|
173 |
+
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
|
174 |
+
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
|
175 |
+
|
176 |
+
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
177 |
+
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
|
178 |
+
|
179 |
+
global_points = []
|
180 |
+
global_point_label = [] # TODO:Clear points each image
|
181 |
+
|
182 |
+
input_size_slider = gr.components.Slider(minimum=512,
|
183 |
+
maximum=1024,
|
184 |
+
value=1024,
|
185 |
+
step=64,
|
186 |
+
label='Input_size',
|
187 |
+
info='Our model was trained on a size of 1024')
|
188 |
+
|
189 |
+
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
190 |
+
with gr.Row():
|
191 |
+
with gr.Column(scale=1):
|
192 |
+
# Title
|
193 |
+
gr.Markdown(title)
|
194 |
+
|
195 |
+
with gr.Column(scale=1):
|
196 |
+
# News
|
197 |
+
gr.Markdown(news)
|
198 |
+
|
199 |
+
with gr.Tab("Everything mode"):
|
200 |
+
# Images
|
201 |
+
with gr.Row(variant="panel"):
|
202 |
+
with gr.Column(scale=1):
|
203 |
+
cond_img_e.render()
|
204 |
+
|
205 |
+
with gr.Column(scale=1):
|
206 |
+
segm_img_e.render()
|
207 |
+
|
208 |
+
# Submit & Clear
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
input_size_slider.render()
|
212 |
+
|
213 |
+
with gr.Row():
|
214 |
+
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
|
215 |
+
|
216 |
+
with gr.Column():
|
217 |
+
segment_btn_e = gr.Button("Segment Everything", variant='primary')
|
218 |
+
clear_btn_e = gr.Button("Clear", variant="secondary")
|
219 |
+
|
220 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
221 |
+
gr.Examples(examples=examples,
|
222 |
+
inputs=[cond_img_e],
|
223 |
+
outputs=segm_img_e,
|
224 |
+
fn=segment_everything,
|
225 |
+
cache_examples=True,
|
226 |
+
examples_per_page=4)
|
227 |
+
|
228 |
+
with gr.Column():
|
229 |
+
with gr.Accordion("Advanced options", open=False):
|
230 |
+
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
231 |
+
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
232 |
+
with gr.Row():
|
233 |
+
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
234 |
+
with gr.Column():
|
235 |
+
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
236 |
+
|
237 |
+
# Description
|
238 |
+
gr.Markdown(description_e)
|
239 |
+
|
240 |
+
with gr.Tab("Points mode"):
|
241 |
+
# Images
|
242 |
+
with gr.Row(variant="panel"):
|
243 |
+
with gr.Column(scale=1):
|
244 |
+
cond_img_p.render()
|
245 |
+
|
246 |
+
with gr.Column(scale=1):
|
247 |
+
segm_img_p.render()
|
248 |
+
|
249 |
+
# Submit & Clear
|
250 |
+
with gr.Row():
|
251 |
+
with gr.Column():
|
252 |
+
with gr.Row():
|
253 |
+
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)")
|
254 |
+
|
255 |
+
with gr.Column():
|
256 |
+
segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
|
257 |
+
clear_btn_p = gr.Button("Clear points", variant='secondary')
|
258 |
+
|
259 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
260 |
+
gr.Examples(examples=examples,
|
261 |
+
inputs=[cond_img_p],
|
262 |
+
outputs=segm_img_p,
|
263 |
+
fn=segment_with_points,
|
264 |
+
# cache_examples=True,
|
265 |
+
examples_per_page=4)
|
266 |
+
|
267 |
+
with gr.Column():
|
268 |
+
# Description
|
269 |
+
gr.Markdown(description_p)
|
270 |
+
|
271 |
+
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
272 |
+
|
273 |
+
segment_btn_e.click(segment_everything,
|
274 |
+
inputs=[cond_img_e, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check, retina_check],
|
275 |
+
outputs=segm_img_e)
|
276 |
+
|
277 |
+
segment_btn_p.click(segment_with_points,
|
278 |
+
inputs=[cond_img_p],
|
279 |
+
outputs=[segm_img_p, cond_img_p])
|
280 |
+
|
281 |
+
def clear():
|
282 |
+
return None, None
|
283 |
+
|
284 |
+
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
285 |
+
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
286 |
+
|
287 |
+
demo.queue()
|
288 |
+
demo.launch()
|
app_debug.py
DELETED
@@ -1,287 +0,0 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
-
import numpy as np
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import gradio as gr
|
5 |
-
import cv2
|
6 |
-
import torch
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
# Load the pre-trained model
|
10 |
-
model = YOLO('checkpoints/FastSAM.pt')
|
11 |
-
|
12 |
-
# Description
|
13 |
-
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
14 |
-
|
15 |
-
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
|
16 |
-
|
17 |
-
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
18 |
-
|
19 |
-
⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
20 |
-
|
21 |
-
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
22 |
-
|
23 |
-
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
|
24 |
-
|
25 |
-
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
|
26 |
-
|
27 |
-
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
|
28 |
-
|
29 |
-
"""
|
30 |
-
|
31 |
-
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"],
|
32 |
-
["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
|
33 |
-
["assets/sa_561.jpg"], ["assets/sa_192.jpg"],
|
34 |
-
["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
|
35 |
-
|
36 |
-
default_example = examples[0]
|
37 |
-
|
38 |
-
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
39 |
-
|
40 |
-
def fast_process(annotations, image, high_quality, device, scale):
|
41 |
-
if isinstance(annotations[0],dict):
|
42 |
-
annotations = [annotation['segmentation'] for annotation in annotations]
|
43 |
-
|
44 |
-
original_h = image.height
|
45 |
-
original_w = image.width
|
46 |
-
if high_quality == True:
|
47 |
-
if isinstance(annotations[0],torch.Tensor):
|
48 |
-
annotations = np.array(annotations.cpu())
|
49 |
-
for i, mask in enumerate(annotations):
|
50 |
-
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
51 |
-
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
52 |
-
if device == 'cpu':
|
53 |
-
annotations = np.array(annotations)
|
54 |
-
inner_mask = fast_show_mask(annotations,
|
55 |
-
plt.gca(),
|
56 |
-
bbox=None,
|
57 |
-
points=None,
|
58 |
-
pointlabel=None,
|
59 |
-
retinamask=True,
|
60 |
-
target_height=original_h,
|
61 |
-
target_width=original_w)
|
62 |
-
else:
|
63 |
-
if isinstance(annotations[0],np.ndarray):
|
64 |
-
annotations = torch.from_numpy(annotations)
|
65 |
-
inner_mask = fast_show_mask_gpu(annotations,
|
66 |
-
plt.gca(),
|
67 |
-
bbox=None,
|
68 |
-
points=None,
|
69 |
-
pointlabel=None)
|
70 |
-
if isinstance(annotations, torch.Tensor):
|
71 |
-
annotations = annotations.cpu().numpy()
|
72 |
-
|
73 |
-
if high_quality:
|
74 |
-
contour_all = []
|
75 |
-
temp = np.zeros((original_h, original_w,1))
|
76 |
-
for i, mask in enumerate(annotations):
|
77 |
-
if type(mask) == dict:
|
78 |
-
mask = mask['segmentation']
|
79 |
-
annotation = mask.astype(np.uint8)
|
80 |
-
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
81 |
-
for contour in contours:
|
82 |
-
contour_all.append(contour)
|
83 |
-
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
84 |
-
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
85 |
-
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
86 |
-
image = image.convert('RGBA')
|
87 |
-
|
88 |
-
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
89 |
-
image.paste(overlay_inner, (0, 0), overlay_inner)
|
90 |
-
|
91 |
-
if high_quality:
|
92 |
-
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
93 |
-
image.paste(overlay_contour, (0, 0), overlay_contour)
|
94 |
-
|
95 |
-
return image
|
96 |
-
|
97 |
-
# CPU post process
|
98 |
-
def fast_show_mask(annotation, ax, bbox=None,
|
99 |
-
points=None, pointlabel=None,
|
100 |
-
retinamask=True, target_height=960,
|
101 |
-
target_width=960):
|
102 |
-
msak_sum = annotation.shape[0]
|
103 |
-
height = annotation.shape[1]
|
104 |
-
weight = annotation.shape[2]
|
105 |
-
# 将annotation 按照面积 排序
|
106 |
-
areas = np.sum(annotation, axis=(1, 2))
|
107 |
-
sorted_indices = np.argsort(areas)[::1]
|
108 |
-
annotation = annotation[sorted_indices]
|
109 |
-
|
110 |
-
index = (annotation != 0).argmax(axis=0)
|
111 |
-
color = np.random.random((msak_sum,1,1,3))
|
112 |
-
transparency = np.ones((msak_sum,1,1,1)) * 0.6
|
113 |
-
visual = np.concatenate([color,transparency],axis=-1)
|
114 |
-
mask_image = np.expand_dims(annotation,-1) * visual
|
115 |
-
|
116 |
-
mask = np.zeros((height,weight,4))
|
117 |
-
|
118 |
-
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
119 |
-
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
120 |
-
# 使用向量化索引更新show的值
|
121 |
-
mask[h_indices, w_indices, :] = mask_image[indices]
|
122 |
-
if bbox is not None:
|
123 |
-
x1, y1, x2, y2 = bbox
|
124 |
-
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
125 |
-
# draw point
|
126 |
-
if points is not None:
|
127 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
128 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
129 |
-
|
130 |
-
if retinamask==False:
|
131 |
-
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
132 |
-
|
133 |
-
return mask
|
134 |
-
|
135 |
-
|
136 |
-
def fast_show_mask_gpu(annotation, ax,
|
137 |
-
bbox=None, points=None,
|
138 |
-
pointlabel=None):
|
139 |
-
msak_sum = annotation.shape[0]
|
140 |
-
height = annotation.shape[1]
|
141 |
-
weight = annotation.shape[2]
|
142 |
-
areas = torch.sum(annotation, dim=(1, 2))
|
143 |
-
sorted_indices = torch.argsort(areas, descending=False)
|
144 |
-
annotation = annotation[sorted_indices]
|
145 |
-
# 找每个位置第一个非零值下标
|
146 |
-
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
147 |
-
color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
|
148 |
-
transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
|
149 |
-
visual = torch.cat([color,transparency],dim=-1)
|
150 |
-
mask_image = torch.unsqueeze(annotation,-1) * visual
|
151 |
-
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
152 |
-
mask = torch.zeros((height,weight,4)).to(annotation.device)
|
153 |
-
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
154 |
-
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
155 |
-
# 使用向量化索引更新show的值
|
156 |
-
mask[h_indices, w_indices, :] = mask_image[indices]
|
157 |
-
mask_cpu = mask.cpu().numpy()
|
158 |
-
if bbox is not None:
|
159 |
-
x1, y1, x2, y2 = bbox
|
160 |
-
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
161 |
-
# draw point
|
162 |
-
if points is not None:
|
163 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
164 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
165 |
-
return mask_cpu
|
166 |
-
|
167 |
-
|
168 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
169 |
-
|
170 |
-
def segment_image(input, evt: gr.SelectData=None, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25):
|
171 |
-
point = (evt.index[0],evt.index[1])
|
172 |
-
input_size = int(input_size) # 确保 imgsz 是整数
|
173 |
-
|
174 |
-
# Thanks for the suggestion by hysts in HuggingFace.
|
175 |
-
w, h = input.size
|
176 |
-
scale = input_size / max(w, h)
|
177 |
-
new_w = int(w * scale)
|
178 |
-
new_h = int(h * scale)
|
179 |
-
input = input.resize((new_w, new_h))
|
180 |
-
|
181 |
-
results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size)
|
182 |
-
fig = fast_process(annotations=results[0].masks.data,
|
183 |
-
image=input, high_quality=high_visual_quality,
|
184 |
-
device=device, scale=(1024 // input_size),
|
185 |
-
points=)
|
186 |
-
return fig
|
187 |
-
|
188 |
-
# input_size=1024
|
189 |
-
# high_quality_visual=True
|
190 |
-
# inp = 'assets/sa_192.jpg'
|
191 |
-
# input = Image.open(inp)
|
192 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
193 |
-
# input_size = int(input_size) # 确保 imgsz 是整数
|
194 |
-
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
195 |
-
# pil_image = fast_process(annotations=results[0].masks.data,
|
196 |
-
# image=input, high_quality=high_quality_visual, device=device)
|
197 |
-
|
198 |
-
cond_img = gr.Image(label="Input", value=default_example[0], type='pil')
|
199 |
-
|
200 |
-
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
201 |
-
|
202 |
-
input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size (Our model was trained on a size of 1024)')
|
203 |
-
|
204 |
-
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
205 |
-
with gr.Row():
|
206 |
-
# Title
|
207 |
-
gr.Markdown(title)
|
208 |
-
# # # Description
|
209 |
-
# # gr.Markdown(description)
|
210 |
-
|
211 |
-
# Images
|
212 |
-
with gr.Row(variant="panel"):
|
213 |
-
with gr.Column(scale=1):
|
214 |
-
cond_img.render()
|
215 |
-
|
216 |
-
with gr.Column(scale=1):
|
217 |
-
segm_img.render()
|
218 |
-
|
219 |
-
# Submit & Clear
|
220 |
-
with gr.Row():
|
221 |
-
with gr.Column():
|
222 |
-
input_size_slider.render()
|
223 |
-
|
224 |
-
with gr.Row():
|
225 |
-
vis_check = gr.Checkbox(value=True, label='high_visual_quality')
|
226 |
-
|
227 |
-
with gr.Column():
|
228 |
-
segment_btn = gr.Button("Segment Anything", variant='primary')
|
229 |
-
|
230 |
-
# with gr.Column():
|
231 |
-
# clear_btn = gr.Button("Clear", variant="primary")
|
232 |
-
|
233 |
-
gr.Markdown("Try some of the examples below ⬇️")
|
234 |
-
gr.Examples(examples=examples,
|
235 |
-
inputs=[cond_img],
|
236 |
-
outputs=segm_img,
|
237 |
-
fn=segment_image,
|
238 |
-
cache_examples=True,
|
239 |
-
examples_per_page=4)
|
240 |
-
# gr.Markdown("Try some of the examples below ⬇️")
|
241 |
-
# gr.Examples(examples=examples,
|
242 |
-
# inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
|
243 |
-
# outputs=output,
|
244 |
-
# fn=segment_image,
|
245 |
-
# examples_per_page=4)
|
246 |
-
|
247 |
-
with gr.Column():
|
248 |
-
with gr.Accordion("Advanced options", open=False):
|
249 |
-
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
|
250 |
-
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
|
251 |
-
|
252 |
-
# Description
|
253 |
-
gr.Markdown(description)
|
254 |
-
|
255 |
-
cond_img.select(segment_image, [], input_img)
|
256 |
-
|
257 |
-
segment_btn.click(segment_image,
|
258 |
-
inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
|
259 |
-
outputs=segm_img)
|
260 |
-
|
261 |
-
# def clear():
|
262 |
-
# return None, None
|
263 |
-
|
264 |
-
# clear_btn.click(fn=clear, inputs=None, outputs=None)
|
265 |
-
|
266 |
-
demo.queue()
|
267 |
-
demo.launch()
|
268 |
-
|
269 |
-
# app_interface = gr.Interface(fn=predict,
|
270 |
-
# inputs=[gr.Image(type='pil'),
|
271 |
-
# gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
272 |
-
# gr.components.Checkbox(value=True, label='high_visual_quality')],
|
273 |
-
# # outputs=['plot'],
|
274 |
-
# outputs=gr.Image(type='pil'),
|
275 |
-
# # examples=[["assets/sa_8776.jpg"]],
|
276 |
-
# # # ["assets/sa_1309.jpg", 1024]],
|
277 |
-
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
278 |
-
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
279 |
-
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
280 |
-
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
|
281 |
-
# cache_examples=True,
|
282 |
-
# title="Fast Segment Anything (Everything mode)"
|
283 |
-
# )
|
284 |
-
|
285 |
-
|
286 |
-
# app_interface.queue(concurrency_count=1, max_size=20)
|
287 |
-
# app_interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|