FastSAM / app.py
AAAAAAyq
Update application file
87c6f54
raw
history blame
4.02 kB
from ultralytics import YOLO
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import io
import torch
# import cv2
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
def format_results(result,filter = 0):
annotations = []
n = len(result.masks.data)
for i in range(n):
annotation = {}
mask = result.masks.data[i] == 1.0
if torch.sum(mask) < filter:
continue
annotation['id'] = i
annotation['segmentation'] = mask.cpu().numpy()
annotation['bbox'] = result.boxes.data[i]
annotation['score'] = result.boxes.conf[i]
annotation['area'] = annotation['segmentation'].sum()
annotations.append(annotation)
return annotations
def show_mask(annotation, ax, random_color=True, bbox=None, points=None):
if random_color : # random mask color
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
if type(annotation) == dict:
annotation = annotation['segmentation']
mask = annotation
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# draw box
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g')
ax.imshow(mask_image)
return mask_image
def post_process(annotations, image, mask_random_color=True, bbox=None, points=None):
plt.figure(figsize=(10, 10))
plt.imshow(image)
for i, mask in enumerate(annotations):
show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points)
plt.axis('off')
# create a BytesIO object
buf = io.BytesIO()
# save plot to buf
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.0)
# use PIL to open the image
img = Image.open(buf)
# copy the image data
img_copy = img.copy()
# don't forget to close the buffer
buf.close()
return img_copy
# def show_mask(annotation, ax, random_color=False):
# if random_color : # 掩膜颜色是否随机决定
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
# else:
# color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
# mask = annotation.cpu().numpy()
# h, w = mask.shape[-2:]
# mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# ax.imshow(mask_image)
# def post_process(annotations, image):
# plt.figure(figsize=(10, 10))
# plt.imshow(image)
# for i, mask in enumerate(annotations):
# show_mask(mask.data, plt.gca(),random_color=True)
# plt.axis('off')
# 获取渲染后的像素数据并转换为PIL图像
return pil_image
# post_process(results[0].masks, Image.open("../data/cake.png"))
def predict(inp):
results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
results = format_results(results[0], 100)
pil_image = post_process(annotations=results, image=inp)
return pil_image
# inp = 'assets/sa_192.jpg'
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
# results = format_results(results[0], 100)
# post_process(annotations=results, image_path=inp)
demo = gr.Interface(fn=predict,
inputs=gr.inputs.Image(type='pil'),
outputs=gr.outputs.Image(type='pil'),
examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
)
demo.launch()