Spaces:
Sleeping
Sleeping
File size: 4,286 Bytes
4d26566 87c6f54 4d26566 87c6f54 4d26566 87c6f54 30e0f74 4d26566 30e0f74 4d26566 30e0f74 4d26566 30e0f74 4d26566 30e0f74 87c6f54 30e0f74 4d26566 8406393 87c6f54 2244041 87c6f54 4d26566 87c6f54 4d26566 8406393 30e0f74 8406393 96f31ad 4d26566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import torch
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
def format_results(result,filter = 0):
annotations = []
n = len(result.masks.data)
for i in range(n):
annotation = {}
mask = result.masks.data[i] == 1.0
if torch.sum(mask) < filter:
continue
annotation['id'] = i
annotation['segmentation'] = mask.cpu().numpy()
annotation['bbox'] = result.boxes.data[i]
annotation['score'] = result.boxes.conf[i]
annotation['area'] = annotation['segmentation'].sum()
annotations.append(annotation)
return annotations
def show_mask(annotation, ax, random_color=True, bbox=None, points=None):
if random_color : # random mask color
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
if type(annotation) == dict:
annotation = annotation['segmentation']
mask = annotation
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# draw box
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g')
ax.imshow(mask_image)
return mask_image
def post_process(annotations, image, mask_random_color=True, bbox=None, points=None):
fig = plt.figure(figsize=(10, 10))
plt.imshow(image)
for i, mask in enumerate(annotations):
show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points)
plt.axis('off')
# # create a BytesIO object
# buf = io.BytesIO()
# # save plot to buf
# plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.0)
# # use PIL to open the image
# img = Image.open(buf)
# # copy the image data
# img_copy = img.copy()
plt.tight_layout()
# # don't forget to close the buffer
# buf.close()
return fig
# def show_mask(annotation, ax, random_color=False):
# if random_color : # 掩膜颜色是否随机决定
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
# else:
# color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
# mask = annotation.cpu().numpy()
# h, w = mask.shape[-2:]
# mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# ax.imshow(mask_image)
# def post_process(annotations, image):
# plt.figure(figsize=(10, 10))
# plt.imshow(image)
# for i, mask in enumerate(annotations):
# show_mask(mask.data, plt.gca(),random_color=True)
# plt.axis('off')
# 获取渲染后的像素数据并转换为PIL图像
return pil_image
# post_process(results[0].masks, Image.open("../data/cake.png"))
def predict(inp, imgsz):
imgsz = int(imgsz) # 确保 imgsz 是整数
results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=imgsz)
results = format_results(results[0], 100)
results.sort(key=lambda x: x['area'], reverse=True)
pil_image = post_process(annotations=results, image=inp)
return pil_image
# inp = 'assets/sa_192.jpg'
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
# results = format_results(results[0], 100)
# post_process(annotations=results, image_path=inp)
demo = gr.Interface(fn=predict,
inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[800, 960, 1024])],
outputs=['plot'],
examples=[["assets/sa_8776.jpg", 1024],
["assets/sa_1309.jpg", 1024]],
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
)
demo.launch() |