Spaces:
Paused
Paused
Upload __init__.py
Browse files- sgm/__init__.py +246 -0
sgm/__init__.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
|
| 7 |
+
from ....util import default, instantiate_from_config
|
| 8 |
+
from ..lpips.loss.lpips import LPIPS
|
| 9 |
+
from ..lpips.model.model import NLayerDiscriminator, weights_init
|
| 10 |
+
from ..lpips.vqperceptual import hinge_d_loss, vanilla_d_loss
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.0):
|
| 14 |
+
if global_step < threshold:
|
| 15 |
+
weight = value
|
| 16 |
+
return weight
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class LatentLPIPS(nn.Module):
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
decoder_config,
|
| 23 |
+
perceptual_weight=1.0,
|
| 24 |
+
latent_weight=1.0,
|
| 25 |
+
scale_input_to_tgt_size=False,
|
| 26 |
+
scale_tgt_to_input_size=False,
|
| 27 |
+
perceptual_weight_on_inputs=0.0,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.scale_input_to_tgt_size = scale_input_to_tgt_size
|
| 31 |
+
self.scale_tgt_to_input_size = scale_tgt_to_input_size
|
| 32 |
+
self.init_decoder(decoder_config)
|
| 33 |
+
self.perceptual_loss = LPIPS().eval()
|
| 34 |
+
self.perceptual_weight = perceptual_weight
|
| 35 |
+
self.latent_weight = latent_weight
|
| 36 |
+
self.perceptual_weight_on_inputs = perceptual_weight_on_inputs
|
| 37 |
+
|
| 38 |
+
def init_decoder(self, config):
|
| 39 |
+
self.decoder = instantiate_from_config(config)
|
| 40 |
+
if hasattr(self.decoder, "encoder"):
|
| 41 |
+
del self.decoder.encoder
|
| 42 |
+
|
| 43 |
+
def forward(self, latent_inputs, latent_predictions, image_inputs, split="train"):
|
| 44 |
+
log = dict()
|
| 45 |
+
loss = (latent_inputs - latent_predictions) ** 2
|
| 46 |
+
log[f"{split}/latent_l2_loss"] = loss.mean().detach()
|
| 47 |
+
image_reconstructions = None
|
| 48 |
+
if self.perceptual_weight > 0.0:
|
| 49 |
+
image_reconstructions = self.decoder.decode(latent_predictions)
|
| 50 |
+
image_targets = self.decoder.decode(latent_inputs)
|
| 51 |
+
perceptual_loss = self.perceptual_loss(
|
| 52 |
+
image_targets.contiguous(), image_reconstructions.contiguous()
|
| 53 |
+
)
|
| 54 |
+
loss = (
|
| 55 |
+
self.latent_weight * loss.mean()
|
| 56 |
+
+ self.perceptual_weight * perceptual_loss.mean()
|
| 57 |
+
)
|
| 58 |
+
log[f"{split}/perceptual_loss"] = perceptual_loss.mean().detach()
|
| 59 |
+
|
| 60 |
+
if self.perceptual_weight_on_inputs > 0.0:
|
| 61 |
+
image_reconstructions = default(
|
| 62 |
+
image_reconstructions, self.decoder.decode(latent_predictions)
|
| 63 |
+
)
|
| 64 |
+
if self.scale_input_to_tgt_size:
|
| 65 |
+
image_inputs = torch.nn.functional.interpolate(
|
| 66 |
+
image_inputs,
|
| 67 |
+
image_reconstructions.shape[2:],
|
| 68 |
+
mode="bicubic",
|
| 69 |
+
antialias=True,
|
| 70 |
+
)
|
| 71 |
+
elif self.scale_tgt_to_input_size:
|
| 72 |
+
image_reconstructions = torch.nn.functional.interpolate(
|
| 73 |
+
image_reconstructions,
|
| 74 |
+
image_inputs.shape[2:],
|
| 75 |
+
mode="bicubic",
|
| 76 |
+
antialias=True,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
perceptual_loss2 = self.perceptual_loss(
|
| 80 |
+
image_inputs.contiguous(), image_reconstructions.contiguous()
|
| 81 |
+
)
|
| 82 |
+
loss = loss + self.perceptual_weight_on_inputs * perceptual_loss2.mean()
|
| 83 |
+
log[f"{split}/perceptual_loss_on_inputs"] = perceptual_loss2.mean().detach()
|
| 84 |
+
return loss, log
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class GeneralLPIPSWithDiscriminator(nn.Module):
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
disc_start: int,
|
| 91 |
+
logvar_init: float = 0.0,
|
| 92 |
+
pixelloss_weight=1.0,
|
| 93 |
+
disc_num_layers: int = 3,
|
| 94 |
+
disc_in_channels: int = 3,
|
| 95 |
+
disc_factor: float = 1.0,
|
| 96 |
+
disc_weight: float = 1.0,
|
| 97 |
+
perceptual_weight: float = 1.0,
|
| 98 |
+
disc_loss: str = "hinge",
|
| 99 |
+
scale_input_to_tgt_size: bool = False,
|
| 100 |
+
dims: int = 2,
|
| 101 |
+
learn_logvar: bool = False,
|
| 102 |
+
regularization_weights: Union[None, dict] = None,
|
| 103 |
+
):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.dims = dims
|
| 106 |
+
if self.dims > 2:
|
| 107 |
+
print(
|
| 108 |
+
f"running with dims={dims}. This means that for perceptual loss calculation, "
|
| 109 |
+
f"the LPIPS loss will be applied to each frame independently. "
|
| 110 |
+
)
|
| 111 |
+
self.scale_input_to_tgt_size = scale_input_to_tgt_size
|
| 112 |
+
assert disc_loss in ["hinge", "vanilla"]
|
| 113 |
+
self.pixel_weight = pixelloss_weight
|
| 114 |
+
self.perceptual_loss = LPIPS().eval()
|
| 115 |
+
self.perceptual_weight = perceptual_weight
|
| 116 |
+
# output log variance
|
| 117 |
+
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
| 118 |
+
self.learn_logvar = learn_logvar
|
| 119 |
+
|
| 120 |
+
self.discriminator = NLayerDiscriminator(
|
| 121 |
+
input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=False
|
| 122 |
+
).apply(weights_init)
|
| 123 |
+
self.discriminator_iter_start = disc_start
|
| 124 |
+
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
| 125 |
+
self.disc_factor = disc_factor
|
| 126 |
+
self.discriminator_weight = disc_weight
|
| 127 |
+
self.regularization_weights = default(regularization_weights, {})
|
| 128 |
+
|
| 129 |
+
def get_trainable_parameters(self) -> Any:
|
| 130 |
+
return self.discriminator.parameters()
|
| 131 |
+
|
| 132 |
+
def get_trainable_autoencoder_parameters(self) -> Any:
|
| 133 |
+
if self.learn_logvar:
|
| 134 |
+
yield self.logvar
|
| 135 |
+
yield from ()
|
| 136 |
+
|
| 137 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
| 138 |
+
if last_layer is not None:
|
| 139 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
| 140 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
| 141 |
+
else:
|
| 142 |
+
nll_grads = torch.autograd.grad(
|
| 143 |
+
nll_loss, self.last_layer[0], retain_graph=True
|
| 144 |
+
)[0]
|
| 145 |
+
g_grads = torch.autograd.grad(
|
| 146 |
+
g_loss, self.last_layer[0], retain_graph=True
|
| 147 |
+
)[0]
|
| 148 |
+
|
| 149 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
| 150 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
| 151 |
+
d_weight = d_weight * self.discriminator_weight
|
| 152 |
+
return d_weight
|
| 153 |
+
|
| 154 |
+
def forward(
|
| 155 |
+
self,
|
| 156 |
+
regularization_log,
|
| 157 |
+
inputs,
|
| 158 |
+
reconstructions,
|
| 159 |
+
optimizer_idx,
|
| 160 |
+
global_step,
|
| 161 |
+
last_layer=None,
|
| 162 |
+
split="train",
|
| 163 |
+
weights=None,
|
| 164 |
+
):
|
| 165 |
+
if self.scale_input_to_tgt_size:
|
| 166 |
+
inputs = torch.nn.functional.interpolate(
|
| 167 |
+
inputs, reconstructions.shape[2:], mode="bicubic", antialias=True
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
if self.dims > 2:
|
| 171 |
+
inputs, reconstructions = map(
|
| 172 |
+
lambda x: rearrange(x, "b c t h w -> (b t) c h w"),
|
| 173 |
+
(inputs, reconstructions),
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
| 177 |
+
if self.perceptual_weight > 0:
|
| 178 |
+
p_loss = self.perceptual_loss(
|
| 179 |
+
inputs.contiguous(), reconstructions.contiguous()
|
| 180 |
+
)
|
| 181 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
| 182 |
+
|
| 183 |
+
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
| 184 |
+
weighted_nll_loss = nll_loss
|
| 185 |
+
if weights is not None:
|
| 186 |
+
weighted_nll_loss = weights * nll_loss
|
| 187 |
+
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
| 188 |
+
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
| 189 |
+
|
| 190 |
+
# now the GAN part
|
| 191 |
+
if optimizer_idx == 0:
|
| 192 |
+
# generator update
|
| 193 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
| 194 |
+
g_loss = -torch.mean(logits_fake)
|
| 195 |
+
|
| 196 |
+
if self.disc_factor > 0.0:
|
| 197 |
+
try:
|
| 198 |
+
d_weight = self.calculate_adaptive_weight(
|
| 199 |
+
nll_loss, g_loss, last_layer=last_layer
|
| 200 |
+
)
|
| 201 |
+
except RuntimeError:
|
| 202 |
+
assert not self.training
|
| 203 |
+
d_weight = torch.tensor(0.0)
|
| 204 |
+
else:
|
| 205 |
+
d_weight = torch.tensor(0.0)
|
| 206 |
+
|
| 207 |
+
disc_factor = adopt_weight(
|
| 208 |
+
self.disc_factor, global_step, threshold=self.discriminator_iter_start
|
| 209 |
+
)
|
| 210 |
+
loss = weighted_nll_loss + d_weight * disc_factor * g_loss
|
| 211 |
+
log = dict()
|
| 212 |
+
for k in regularization_log:
|
| 213 |
+
if k in self.regularization_weights:
|
| 214 |
+
loss = loss + self.regularization_weights[k] * regularization_log[k]
|
| 215 |
+
log[f"{split}/{k}"] = regularization_log[k].detach().mean()
|
| 216 |
+
|
| 217 |
+
log.update(
|
| 218 |
+
{
|
| 219 |
+
"{}/total_loss".format(split): loss.clone().detach().mean(),
|
| 220 |
+
"{}/logvar".format(split): self.logvar.detach(),
|
| 221 |
+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
| 222 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
| 223 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
| 224 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
| 225 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
| 226 |
+
}
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
return loss, log
|
| 230 |
+
|
| 231 |
+
if optimizer_idx == 1:
|
| 232 |
+
# second pass for discriminator update
|
| 233 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
| 234 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
| 235 |
+
|
| 236 |
+
disc_factor = adopt_weight(
|
| 237 |
+
self.disc_factor, global_step, threshold=self.discriminator_iter_start
|
| 238 |
+
)
|
| 239 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
| 240 |
+
|
| 241 |
+
log = {
|
| 242 |
+
"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
| 243 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
| 244 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean(),
|
| 245 |
+
}
|
| 246 |
+
return d_loss, log
|