Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from ultralyticsplus import YOLO, render_result
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Function to perform YOLOv8 object detection
|
7 |
+
def yoloV8_func(image, image_size=640, conf_threshold=0.4, iou_threshold=0.50):
|
8 |
+
# Load the YOLOv8 model from the 'best.pt' checkpoint
|
9 |
+
model_path = "best.pt"
|
10 |
+
model = YOLO(model_path)
|
11 |
+
|
12 |
+
# Perform object detection on the input image using the YOLOv8 model
|
13 |
+
results = model.predict(image,
|
14 |
+
conf=conf_threshold,
|
15 |
+
iou=iou_threshold,
|
16 |
+
imgsz=image_size)
|
17 |
+
|
18 |
+
# Render the output image with bounding boxes around detected objects
|
19 |
+
render = render_result(model=model, image=image, result=results[0])
|
20 |
+
return render
|
21 |
+
|
22 |
+
# Streamlit app
|
23 |
+
def main():
|
24 |
+
st.title("YOLOv8 Object Detection")
|
25 |
+
st.write("Upload an image and set the parameters to detect objects.")
|
26 |
+
|
27 |
+
# Upload image
|
28 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
29 |
+
|
30 |
+
# Parameters
|
31 |
+
image_size = st.slider("Image Size", min_value=320, max_value=1280, value=640, step=32)
|
32 |
+
conf_threshold = st.slider("Confidence Threshold", min_value=0.0, max_value=1.0, value=0.4, step=0.05)
|
33 |
+
iou_threshold = st.slider("IOU Threshold", min_value=0.0, max_value=1.0, value=0.50, step=0.05)
|
34 |
+
|
35 |
+
# Perform object detection when an image is uploaded
|
36 |
+
if uploaded_image is not None:
|
37 |
+
image = Image.open(uploaded_image)
|
38 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
39 |
+
st.write("")
|
40 |
+
st.write("Detecting objects...")
|
41 |
+
|
42 |
+
# Perform object detection
|
43 |
+
output_image = yoloV8_func(image, image_size, conf_threshold, iou_threshold)
|
44 |
+
st.image(output_image, caption="Output Image", use_column_width=True)
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
main()
|