AlphamanKing commited on
Commit
1c56924
·
verified ·
1 Parent(s): be430d1

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +49 -60
  2. requirements.txt +5 -1
app.py CHANGED
@@ -1,64 +1,53 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
+ import torch
4
+ import torch.nn.functional as F
5
+
6
+ # Load MentalBERT model & tokenizer
7
+ MODEL_NAME = "mental/mental-bert-base-uncased"
8
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
9
+ model = AutoModelForSequenceClassification.from_pretrained(
10
+ MODEL_NAME,
11
+ num_labels=2,
12
+ problem_type="single_label_classification"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  )
14
 
15
+ LABELS = {
16
+ "neutral": {"index": 0, "description": "Emotionally balanced or calm"},
17
+ "emotional": {"index": 1, "description": "Showing emotional content"}
18
+ }
19
+
20
+ def analyze_text(text):
21
+ # Tokenize input
22
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
23
+
24
+ # Get model predictions
25
+ with torch.no_grad():
26
+ outputs = model(**inputs)
27
+ logits = outputs.logits
28
+ probs = F.softmax(logits, dim=-1)[0]
29
+
30
+ # Get emotion scores
31
+ emotions = {
32
+ label: float(probs[info["index"]])
33
+ for label, info in LABELS.items()
34
+ }
35
+
36
+ return emotions
37
+
38
+ # Create Gradio interface
39
+ iface = gr.Interface(
40
+ fn=analyze_text,
41
+ inputs=gr.Textbox(label="Enter text to analyze", lines=3),
42
+ outputs=gr.Json(label="Emotion Analysis"),
43
+ title="MentalBERT Emotion Analysis",
44
+ description="Analyze the emotional content of text using MentalBERT",
45
+ examples=[
46
+ ["I feel really happy today!"],
47
+ ["I'm feeling quite stressed and overwhelmed"],
48
+ ["The weather is nice outside"]
49
+ ]
50
+ )
51
 
52
+ # Launch the interface
53
+ iface.launch()
requirements.txt CHANGED
@@ -1 +1,5 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
1
+ gradio==4.13.0
2
+ transformers==4.35.2
3
+ torch==2.1.1
4
+ uvicorn==0.24.0
5
+ pydantic==2.5.2