Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +49 -60
- requirements.txt +5 -1
app.py
CHANGED
@@ -1,64 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
# Load MentalBERT model & tokenizer
|
7 |
+
MODEL_NAME = "mental/mental-bert-base-uncased"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
10 |
+
MODEL_NAME,
|
11 |
+
num_labels=2,
|
12 |
+
problem_type="single_label_classification"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
)
|
14 |
|
15 |
+
LABELS = {
|
16 |
+
"neutral": {"index": 0, "description": "Emotionally balanced or calm"},
|
17 |
+
"emotional": {"index": 1, "description": "Showing emotional content"}
|
18 |
+
}
|
19 |
+
|
20 |
+
def analyze_text(text):
|
21 |
+
# Tokenize input
|
22 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
23 |
+
|
24 |
+
# Get model predictions
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model(**inputs)
|
27 |
+
logits = outputs.logits
|
28 |
+
probs = F.softmax(logits, dim=-1)[0]
|
29 |
+
|
30 |
+
# Get emotion scores
|
31 |
+
emotions = {
|
32 |
+
label: float(probs[info["index"]])
|
33 |
+
for label, info in LABELS.items()
|
34 |
+
}
|
35 |
+
|
36 |
+
return emotions
|
37 |
+
|
38 |
+
# Create Gradio interface
|
39 |
+
iface = gr.Interface(
|
40 |
+
fn=analyze_text,
|
41 |
+
inputs=gr.Textbox(label="Enter text to analyze", lines=3),
|
42 |
+
outputs=gr.Json(label="Emotion Analysis"),
|
43 |
+
title="MentalBERT Emotion Analysis",
|
44 |
+
description="Analyze the emotional content of text using MentalBERT",
|
45 |
+
examples=[
|
46 |
+
["I feel really happy today!"],
|
47 |
+
["I'm feeling quite stressed and overwhelmed"],
|
48 |
+
["The weather is nice outside"]
|
49 |
+
]
|
50 |
+
)
|
51 |
|
52 |
+
# Launch the interface
|
53 |
+
iface.launch()
|
requirements.txt
CHANGED
@@ -1 +1,5 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.13.0
|
2 |
+
transformers==4.35.2
|
3 |
+
torch==2.1.1
|
4 |
+
uvicorn==0.24.0
|
5 |
+
pydantic==2.5.2
|