# app.py import streamlit as st import pandas as pd import numpy as np from typing import Dict from PIL import Image import matplotlib.pyplot as plt from src.models import TrafficData, ClimateData, SubgradeProperties, MaterialProperties, Pavement from src.performance import design_new_pavement from src.lcca import perform_LCCA from src.reporting import generate_report, export_report_to_pdf from src.design import design_pavement_structure from src.utils.helpers import read_excel, save_pdf from src.utils.logger import setup_logger logger = setup_logger(__name__) st.set_page_config(page_title="ME Pavement Design Tool", layout="wide") st.title("🛣️ Mechanistic-Empirical Pavement Design Tool for Highways and Airports") image = Image.open('Pavement.jpg') # Display the image at the top of the sidebar st.sidebar.image(image, use_container_width=True) # Sidebar for Navigation st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox("Choose the app mode", ["Home", "Input Data", "Design Pavement", "Run Simulation", "View Results", "Generate Report"]) # Initialize session state if 'simulation_results' not in st.session_state: st.session_state.simulation_results = {} if 'lcc' not in st.session_state: st.session_state.lcc = 0.0 if 'maintenance_costs' not in st.session_state: st.session_state.maintenance_costs = {} if 'lcc_over_time' not in st.session_state: st.session_state.lcc_over_time = {} if 'pavement_design' not in st.session_state: st.session_state.pavement_design = {} # Home Page if app_mode == "Home": st.markdown(""" ## Welcome to the Mechanistic-Empirical Pavement Design Tool This tool allows you to design new pavements and evaluate their performance based on traffic, material, and environmental data. Follow the navigation steps on the sidebar to input data, design pavement structures, run simulations, view results, and generate comprehensive reports. """) # Input Data Page elif app_mode == "Input Data": st.header("Input Data") st.markdown(""" ### 📋 Dataset Format Instructions Please ensure that your Excel file contains the following sheets with the specified columns like the example dataset. **Example Dataset**: - **Traffic Sheet**: | Axle_Loads | Traffic_Growth_Rate | Analysis_Period | |------------|---------------------|------------------| | 80 | 2.0 | 20 | | 100 | | | | 120 | | | - **Climate Sheet**: | Average_Temperature | Temperature_Variation | Rainfall | |---------------------|-----------------------|----------| | 15 | 10 | 500 | - **Subgrade Sheet**: | Modulus | CBR | |---------|-----| | 3000 | 10 | - **Materials Sheet**: | Asphalt_Modulus | Concrete_Strength | Thermal_Coeff | |-----------------|--------------------|---------------| | 3000 | 30 | 0.0001 | """) st.subheader("Upload Input Data Excel File") uploaded_file = st.file_uploader("Choose an Excel file with required data", type=["xlsx"]) if uploaded_file: try: data_sheets = read_excel(uploaded_file) # Assuming sheets named 'Traffic', 'Climate', 'Subgrade', 'Materials' traffic_df = data_sheets.get('Traffic') or data_sheets.get('Sheet1') # Fallback to first sheet climate_df = data_sheets.get('Climate') or data_sheets.get('Sheet2') subgrade_df = data_sheets.get('Subgrade') or data_sheets.get('Sheet3') materials_df = data_sheets.get('Materials') or data_sheets.get('Sheet4') # Create data model instances traffic_data = TrafficData.from_dataframe(traffic_df) climate_data = ClimateData.from_dataframe(climate_df) subgrade_props = SubgradeProperties.from_dataframe(subgrade_df) material_props = MaterialProperties.from_dataframe(materials_df) # Store in session state st.session_state.traffic_data = traffic_data st.session_state.climate_data = climate_data st.session_state.subgrade_props = subgrade_props st.session_state.material_props = material_props st.success("Data loaded successfully from the uploaded Excel file.") except Exception as e: st.error(f"Failed to load data: {e}") st.markdown(""" ### Alternatively, Enter Data Manually """) with st.form("manual_data_form"): st.subheader("Traffic Data") axle_loads = st.text_input("Axle Loads (comma-separated in kN)", value="80, 100, 120") traffic_growth_rate = st.number_input("Traffic Growth Rate (% per annum)", min_value=0.0, max_value=100.0, value=2.0, step=0.1) analysis_period = st.number_input("Analysis Period (Years)", min_value=1, max_value=100, value=20, step=1) st.subheader("Climate Data") average_temperature = st.number_input("Average Temperature (°C)", value=15.0) temperature_variation = st.number_input("Temperature Variation (°C)", value=10.0) rainfall = st.number_input("Annual Rainfall (mm)", value=500.0) st.subheader("Subgrade Properties") modulus = st.number_input("Modulus of Subgrade Reaction (kPa/m)", value=3000.0) CBR = st.number_input("California Bearing Ratio (CBR %)", value=10.0) st.subheader("Material Properties") asphalt_modulus = st.number_input("Asphalt Modulus (MPa)", value=3000.0) concrete_strength = st.number_input("Concrete Strength (MPa)", value=30.0) thermal_coeff = st.number_input("Thermal Coefficient (°C^-1)", value=0.0001) submitted = st.form_submit_button("Submit Data") if submitted: try: axle_loads_list = [float(load.strip()) for load in axle_loads.split(",")] traffic_data = TrafficData(axle_loads=axle_loads_list, traffic_growth_rate=traffic_growth_rate / 100, analysis_period=int(analysis_period)) climate_data = ClimateData(average_temperature=average_temperature, temperature_variation=temperature_variation, rainfall=rainfall) subgrade_props = SubgradeProperties(modulus=modulus, CBR=CBR) material_props = MaterialProperties(asphalt_modulus=asphalt_modulus, concrete_strength=concrete_strength, thermal_coeff=thermal_coeff) # Store in session state st.session_state.traffic_data = traffic_data st.session_state.climate_data = climate_data st.session_state.subgrade_props = subgrade_props st.session_state.material_props = material_props st.success("Data entered successfully.") except Exception as e: st.error(f"Error in data entry: {e}") # Design Pavement Page elif app_mode == "Design Pavement": st.header("Design Pavement Structure") if ('traffic_data' in st.session_state and 'climate_data' in st.session_state and 'subgrade_props' in st.session_state and 'material_props' in st.session_state): st.subheader("Define Pavement Layers") with st.form("pavement_design_form"): # User inputs the number of pavement layers num_layers = st.number_input( "Number of Pavement Layers", min_value=1, max_value=10, value=3, step=1, help="Specify the total number of pavement layers you wish to design." ) layers = [] st.markdown("### Define Each Layer") for i in range(1, int(num_layers) + 1): st.markdown(f"**Layer {i}**") # Select layer type layer_type = st.selectbox( f"Layer {i} Type", options=["Asphalt", "Concrete", "Base", "Sub-base"], key=f"layer_type_{i}", help="Select the material type for this pavement layer." ) # Input layer thickness thickness = st.number_input( f"Layer {i} Thickness (mm)", min_value=1.0, max_value=1000.0, value=100.0, step=1.0, key=f"layer_thickness_{i}", help="Enter the thickness of this layer in millimeters." ) layers.append((layer_type, thickness)) # Store as tuple st.markdown("### Define Cost per Layer Type") st.write("Enter the cost per millimeter for each layer type. These costs will be used to calculate the total estimated cost of the pavement.") # Input costs for each layer type asphalt_cost = st.number_input( "Asphalt Cost per mm ($)", min_value=0.0, value=50.0, step=1.0, help="Enter the cost per millimeter for Asphalt layers." ) concrete_cost = st.number_input( "Concrete Cost per mm ($)", min_value=0.0, value=80.0, step=1.0, help="Enter the cost per millimeter for Concrete layers." ) base_cost = st.number_input( "Base Cost per mm ($)", min_value=0.0, value=40.0, step=1.0, help="Enter the cost per millimeter for Base layers." ) subbase_cost = st.number_input( "Sub-base Cost per mm ($)", min_value=0.0, value=30.0, step=1.0, help="Enter the cost per millimeter for Sub-base layers." ) # Submit button to define pavement structure submitted = st.form_submit_button("Define Pavement Structure") if submitted: try: # Create a dictionary for layer costs based on user input layer_costs = { "Asphalt": asphalt_cost, "Concrete": concrete_cost, "Base": base_cost, "Sub-base": subbase_cost } # Store pavement design and layer costs in session state st.session_state.pavement_design = layers st.session_state.layer_costs = layer_costs st.success("Pavement structure defined successfully.") except Exception as e: st.error(f"Error in pavement design: {e}") if 'pavement_design' in st.session_state and 'layer_costs' in st.session_state: st.subheader("Pavement Design Summary") design_summary = st.session_state.pavement_design layer_costs = st.session_state.layer_costs # Perform Calculations Based on User Input total_thickness = sum([thickness for _, thickness in design_summary]) total_cost = sum([layer_costs.get(layer_type, 0) * thickness for layer_type, thickness in design_summary]) # Predict Distresses (Simplified Example Formulas) fatigue_cracking = total_thickness * 0.05 # Placeholder formula rutting = total_thickness * 0.03 thermal_cracking = total_thickness * 0.02 # Display Calculation Results st.write(f"**Total Pavement Thickness:** {total_thickness} mm") st.write(f"**Estimated Total Cost:** ${total_cost:,.2f}") st.write(f"**Predicted Fatigue Cracking:** {fatigue_cracking:.2f} cracks") st.write(f"**Predicted Rutting:** {rutting:.2f} mm") st.write(f"**Predicted Thermal Cracking:** {thermal_cracking:.2f} cracks") st.subheader("Detailed Pavement Layers") design_df = pd.DataFrame(design_summary, columns=["Layer Type", "Thickness (mm)"]) st.table(design_df) # Optional: Visual Representation of Pavement Layers st.markdown("### Pavement Structure Visualization") fig, ax = plt.subplots(figsize=(6, 3)) current_y = 0 for layer_type, thickness in design_summary: ax.barh(1, thickness, left=current_y, height=0.5, label=layer_type) current_y += thickness ax.set_xlabel("Thickness (mm)") ax.set_yticks([]) ax.legend() st.pyplot(fig) # Run Simulation Page elif app_mode == "Run Simulation": st.header("Run Simulation") if 'pavement_design' in st.session_state and 'traffic_data' in st.session_state and 'climate_data' in st.session_state and \ 'subgrade_props' in st.session_state and 'material_props' in st.session_state: st.subheader("Simulation Parameters") with st.form("simulation_parameters_form"): initial_cost = st.number_input("Initial Construction Cost ($)", min_value=0.0, value=1000000.0, step=1000.0) maintenance_costs_input = st.text_area("Maintenance Costs (Year:Cost, separated by commas)", value="5:100000, 10:150000, 15:200000, 20:250000") discount_rate = st.number_input("Discount Rate (% per annum)", min_value=0.0, max_value=100.0, value=3.0, step=0.1) analysis_period = st.number_input("Lifecycle Analysis Period (Years)", min_value=1, max_value=100, value=20, step=1) submitted = st.form_submit_button("Run Simulation") if submitted: try: # Parse maintenance costs maintenance_costs = {} for item in maintenance_costs_input.split(","): if ':' in item: year, cost = item.strip().split(":") maintenance_costs[int(year)] = float(cost) else: st.warning(f"Ignoring invalid maintenance cost entry: '{item}'") # Retrieve data from session state pavement_design = st.session_state.pavement_design traffic_data = st.session_state.traffic_data climate_data = st.session_state.climate_data subgrade_props = st.session_state.subgrade_props material_props = st.session_state.material_props # Run simulation simulation_results = design_new_pavement(pavement_design, traffic_data, climate_data, subgrade_props, material_props) st.session_state.simulation_results = simulation_results # Perform LCCA lcc = perform_LCCA(initial_cost, maintenance_costs, discount_rate / 100, analysis_period) st.session_state.lcc = lcc st.session_state.maintenance_costs = maintenance_costs # Calculate LCCA over time for visualization lcc_over_time = [] cumulative_lcc = initial_cost for year in range(1, analysis_period + 1): maintenance_cost = maintenance_costs.get(year, 0) discounted_cost = maintenance_cost / ((1 + discount_rate / 100) ** year) cumulative_lcc += discounted_cost lcc_over_time.append(cumulative_lcc) st.session_state.lcc_over_time = lcc_over_time st.success("Simulation and LCCA completed successfully.") except Exception as e: st.error(f"Error during simulation: {e}") else: st.warning("Please input the necessary data in the 'Input Data' and 'Design Pavement' sections before running simulations.") # View Results Page elif app_mode == "View Results": st.header("Simulation Results") if 'simulation_results' in st.session_state and st.session_state.simulation_results: simulation_results = st.session_state.simulation_results lcc = st.session_state.lcc maintenance_costs = st.session_state.maintenance_costs lcc_over_time = st.session_state.lcc_over_time st.subheader("Pavement Performance Predictions") df_results = pd.DataFrame(list(simulation_results.items()), columns=["Distress Type", "Value"]) st.table(df_results) st.subheader("Lifecycle Cost Analysis (LCCA)") st.write(f"**Total Lifecycle Cost:** ${lcc:,.2f}") # Visualization 1: Pie Chart of Distress Types st.subheader("Distribution of Pavement Distresses") pie_chart_data = df_results.set_index('Distress Type') st.pyplot(pie_chart_data.plot.pie(y='Value', autopct='%1.1f%%', figsize=(6, 6)).figure) # Visualization 2: Bar Chart of Distress Types st.subheader("Pavement Distresses Overview") st.bar_chart(df_results.set_index('Distress Type')) # Visualization 3: Line Chart of Lifecycle Cost Over Time if lcc_over_time: st.subheader("Lifecycle Cost Over Time") years = list(range(1, len(lcc_over_time) + 1)) cost_data = pd.DataFrame({ 'Year': years, 'Cumulative LCC': lcc_over_time }) st.line_chart(cost_data.set_index('Year')) # Detailed Breakdown Table st.subheader("Maintenance Costs Over Time") maintenance_df = pd.DataFrame({ 'Year': list(maintenance_costs.keys()), 'Maintenance Cost ($)': list(maintenance_costs.values()) }).sort_values('Year') st.table(maintenance_df) # Visualization 4: Line Chart of Cumulative LCCA st.subheader("Cumulative Lifecycle Cost Analysis") st.line_chart(cost_data.set_index('Year')) # Visualization 5: Comparison of Initial Cost vs LCCA st.subheader("Initial Cost vs Total Lifecycle Cost") initial_cost = st.session_state.get('initial_cost', 0) comparison_df = pd.DataFrame({ 'Cost Type': ['Initial Construction Cost', 'Total Lifecycle Cost'], 'Amount ($)': [initial_cost, lcc] }) st.bar_chart(comparison_df.set_index('Cost Type')) # Additional Visualization: Pie Chart of Maintenance Cost Distribution if maintenance_costs: st.subheader("Maintenance Cost Distribution") maintenance_df_pie = pd.DataFrame({ 'Year': list(maintenance_costs.keys()), 'Maintenance Cost ($)': list(maintenance_costs.values()) }).sort_values('Year') st.pyplot(maintenance_df_pie.plot.pie(y='Maintenance Cost ($)', labels=maintenance_df_pie['Year'], autopct='%1.1f%%', figsize=(6,6)).figure) # Pavement Design Results if 'pavement_design' in st.session_state and st.session_state.pavement_design: st.subheader("Pavement Design Results") pavement_design = st.session_state.pavement_design design_df = pd.DataFrame(pavement_design, columns=["Layer Type", "Thickness (mm)"]) st.table(design_df) else: st.warning("No simulation results to display. Please run a simulation first.") # Generate Report Page elif app_mode == "Generate Report": st.header("Generate Report") if 'simulation_results' in st.session_state and st.session_state.simulation_results and \ 'lcc' in st.session_state and st.session_state.lcc > 0 and \ 'maintenance_costs' in st.session_state and st.session_state.maintenance_costs: simulation_results = st.session_state.simulation_results lcc = st.session_state.lcc maintenance_costs = st.session_state.maintenance_costs lcc_over_time = st.session_state.lcc_over_time st.subheader("Review Results Before Report Generation") df_results = pd.DataFrame(list(simulation_results.items()), columns=["Distress Type", "Value"]) st.table(df_results) st.write(f"**Lifecycle Cost Analysis (LCCA):** ${lcc:,.2f}") st.subheader("Maintenance Costs Breakdown") maintenance_df = pd.DataFrame({ 'Year': list(maintenance_costs.keys()), 'Maintenance Cost ($)': list(maintenance_costs.values()) }).sort_values('Year') st.table(maintenance_df) st.subheader("Lifecycle Cost Over Time") if lcc_over_time: years = list(range(1, len(lcc_over_time) + 1)) cost_data = pd.DataFrame({ 'Year': years, 'Cumulative LCC': lcc_over_time }) st.line_chart(cost_data.set_index('Year')) generate_report_btn = st.button("Generate and Download Report") if generate_report_btn: try: report_content = generate_report(simulation_results, lcc) report_path = "pavement_design_report.pdf" export_report_to_pdf(report_content, report_path) with open(report_path, "rb") as pdf_file: PDFbyte = pdf_file.read() st.download_button(label="Download Report as PDF", data=PDFbyte, file_name="pavement_design_report.pdf", mime='application/octet-stream') st.success("Report generated and ready for download.") except Exception as e: st.error(f"Failed to generate report: {e}") else: st.warning("No simulation results available. Please run a simulation first.")