Alidr79's picture
Create app.py
84a8863 verified
raw
history blame
3.99 kB
import torch
from torch.utils.data import DataLoader
import numpy as np
from tqdm import tqdm
from transformers import VitsTokenizer, VitsModel, set_seed
from transformers import SpeechT5HifiGan
from datasets import load_dataset
from tqdm import tqdm
import soundfile as sf
import librosa
dataset = load_dataset('SeyedAli/Persian-Speech-Dataset')
dataset = dataset["test"].select(range(100))
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(1)
# Load model directly
from transformers import AutoProcessor, AutoModelForTextToSpectrogram
processor = AutoProcessor.from_pretrained("Alidr79/speecht5_v2_best")
model = AutoModelForTextToSpectrogram.from_pretrained("Alidr79/speecht5_v2_best")
from speechbrain.inference.classifiers import EncoderClassifier
import os
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
return speaker_embeddings
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
from PersianG2p import Persian_g2p_converter
from scipy.io import wavfile
import soundfile as sf
PersianG2Pconverter = Persian_g2p_converter(use_large = True)
import noisereduce as nr
def denoise_audio(audio, sr):
# Perform noise reduction
denoised_audio = nr.reduce_noise(y=audio, sr=sr)
return denoised_audio
import noisereduce as nr
from pydub import AudioSegment
def match_target_amplitude(sound, target_dBFS):
change_in_dBFS = target_dBFS - sound.dBFS
return sound.apply_gain(change_in_dBFS)
import librosa
def tts_fn(slider_value, input_text):
audio_embedding = dataset[slider_value]['audio']['array']
sample_rate_embedding = dataset[slider_value]['audio']['sampling_rate']
if original_sr != target_sr:
audio_embedding = librosa.resample(audio_embedding, orig_sr=sample_rate_embedding, target_sr=16_000)
with torch.no_grad():
speaker_embedding = create_speaker_embedding(audio_embedding)
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
phonemes = PersianG2Pconverter.transliterate(input_text, tidy = False, secret = True)
text = "</s>"
for i in phonemes.replace(' .', '').split(" "):
text += i + " <pad> "
text += "</s>"
print(text)
with torch.no_grad():
inputs = processor(text = text, return_tensors="pt")
with torch.no_grad():
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embedding, minlenratio = 2, maxlenratio = 4, threshold = 0.3)
with torch.no_grad():
speech = vocoder(spectrogram)
speech = speech.numpy().reshape(-1)
speech_denoised = denoise_audio(speech, 16000)
sf.write("in_speech.wav", speech_denoised, 16000)
sound = AudioSegment.from_wav("in_speech.wav", "wav")
normalized_sound = match_target_amplitude(sound, -20.0)
normalized_sound.export("out_sound.wav", format="wav")
sample_rate_out, audio_out = wavfile.read("out_sound.wav")
assert sample_rate_out == 16_000
return 16000, (audio_out.reshape(-1)).astype(np.int16)
import gradio as gr
slider = gr.Slider(
minimum=0,
maximum=100,
value=86,
step=1,
label="Select a speaker"
)
# Create the text input component
text_input = gr.Textbox(
label="Enter some text",
placeholder="Type something here..."
)
demo = gr.Interface(
fn = tts_fn,
inputs=[slider, text_input], # List of inputs
outputs = "audio"
)
demo.launch()