Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| from PIL import Image | |
| import torch | |
| from typing import Tuple, Optional, Dict, Any, List | |
| from dataclasses import dataclass | |
| import random | |
| from datetime import datetime, timedelta | |
| import os | |
| from qwen_agent.agents import Assistant | |
| from qwen_agent.gui.web_ui import WebUI | |
| class PatientMetadata: | |
| age: int | |
| smoking_status: str | |
| family_history: bool | |
| menopause_status: str | |
| previous_mammogram: bool | |
| breast_density: str | |
| hormone_therapy: bool | |
| class AnalysisResult: | |
| has_tumor: bool | |
| tumor_size: str | |
| confidence: float | |
| metadata: PatientMetadata | |
| class BreastCancerAgent(Assistant): | |
| def __init__(self): | |
| super().__init__( | |
| llm={ | |
| 'model': os.environ.get("MODELNAME", "qwen-vl-chat"), | |
| 'generate_cfg': { | |
| 'max_input_tokens': 32768, | |
| 'max_retries': 10, | |
| 'temperature': float(os.environ.get("T", 0.001)), | |
| 'repetition_penalty': float(os.environ.get("R", 1.0)), | |
| "top_k": int(os.environ.get("K", 20)), | |
| "top_p": float(os.environ.get("P", 0.8)), | |
| } | |
| }, | |
| name='Breast Cancer Analyzer', | |
| description='Medical imaging analysis system specializing in breast cancer detection and reporting.', | |
| system_message='You are an expert medical imaging system analyzing breast cancer scans. Provide clear, accurate, and professional analysis.' | |
| ) | |
| print("Initializing system...") | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"Using device: {self.device}") | |
| self._init_vision_models() | |
| print("Initialization complete!") | |
| def _init_vision_models(self) -> None: | |
| """Initialize vision models for abnormality detection and size measurement.""" | |
| print("Loading detection models...") | |
| self.tumor_detector = AutoModelForImageClassification.from_pretrained( | |
| "SIATCN/vit_tumor_classifier" | |
| ).to(self.device).eval() | |
| self.tumor_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier") | |
| self.size_detector = AutoModelForImageClassification.from_pretrained( | |
| "SIATCN/vit_tumor_radius_detection_finetuned" | |
| ).to(self.device).eval() | |
| self.size_processor = AutoImageProcessor.from_pretrained( | |
| "SIATCN/vit_tumor_radius_detection_finetuned" | |
| ) | |
| def _process_image(self, image: Image.Image) -> Image.Image: | |
| """Process input image for model consumption.""" | |
| if image.mode != 'RGB': | |
| image = image.convert('RGB') | |
| return image.resize((224, 224)) | |
| def _analyze_image(self, image: Image.Image) -> AnalysisResult: | |
| """Perform abnormality detection and size measurement.""" | |
| metadata = self._generate_synthetic_metadata() | |
| tumor_inputs = self.tumor_processor(image, return_tensors="pt").to(self.device) | |
| tumor_outputs = self.tumor_detector(**tumor_inputs) | |
| tumor_probs = tumor_outputs.logits.softmax(dim=-1)[0].cpu() | |
| has_tumor = tumor_probs[1] > tumor_probs[0] | |
| confidence = float(tumor_probs[1] if has_tumor else tumor_probs[0]) | |
| size_inputs = self.size_processor(image, return_tensors="pt").to(self.device) | |
| size_outputs = self.size_detector(**size_inputs) | |
| size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu() | |
| sizes = ["no-tumor", "0.5", "1.0", "1.5"] | |
| tumor_size = sizes[size_pred.argmax().item()] | |
| return AnalysisResult(has_tumor, tumor_size, confidence, metadata) | |
| def _generate_synthetic_metadata(self) -> PatientMetadata: | |
| """Generate realistic patient metadata for breast cancer screening.""" | |
| age = random.randint(40, 75) | |
| smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"]) | |
| family_history = random.choice([True, False]) | |
| menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal" | |
| previous_mammogram = random.choice([True, False]) | |
| breast_density = random.choice(["A: Almost entirely fatty", | |
| "B: Scattered fibroglandular", | |
| "C: Heterogeneously dense", | |
| "D: Extremely dense"]) | |
| hormone_therapy = random.choice([True, False]) | |
| return PatientMetadata( | |
| age=age, | |
| smoking_status=smoking_status, | |
| family_history=family_history, | |
| menopause_status=menopause_status, | |
| previous_mammogram=previous_mammogram, | |
| breast_density=breast_density, | |
| hormone_therapy=hormone_therapy | |
| ) | |
| def run(self, image_path: str) -> str: | |
| """Run analysis on an image.""" | |
| try: | |
| image = Image.open(image_path) | |
| processed_image = self._process_image(image) | |
| analysis = self._analyze_image(processed_image) | |
| report = f"""MICROWAVE IMAGING ANALYSIS: | |
| • Detection: {'Positive' if analysis.has_tumor else 'Negative'} | |
| • Size: {analysis.tumor_size} cm | |
| PATIENT INFO: | |
| • Age: {analysis.metadata.age} years | |
| • Risk Factors: {', '.join([ | |
| 'family history' if analysis.metadata.family_history else '', | |
| analysis.metadata.smoking_status.lower(), | |
| 'hormone therapy' if analysis.metadata.hormone_therapy else '', | |
| ]).strip(', ')} | |
| REPORT: | |
| {'Abnormal scan showing potential mass.' if analysis.has_tumor else 'Normal scan with no significant findings.'} | |
| Confidence level: {analysis.confidence:.1%} | |
| RECOMMENDATION: | |
| {('Immediate follow-up imaging recommended.' if analysis.tumor_size in ['1.0', '1.5'] else 'Follow-up imaging in 6 months recommended.') if analysis.has_tumor else 'Continue routine screening per protocol.'}""" | |
| return report | |
| except Exception as e: | |
| return f"Error during analysis: {str(e)}" | |
| def run_interface(): | |
| """Create and run the WebUI interface.""" | |
| agent = BreastCancerAgent() | |
| chatbot_config = { | |
| 'user.name': 'Medical Staff', | |
| 'input.placeholder': 'Upload a breast microwave image for analysis...', | |
| 'prompt.suggestions': [ | |
| {'text': 'Can you analyze this mammogram?'}, | |
| {'text': 'What should I look for in the results?'}, | |
| {'text': 'How reliable is the detection?'} | |
| ] | |
| } | |
| app = WebUI(agent, chatbot_config=chatbot_config) | |
| app.run(share=True, concurrency_limit=80) | |
| if __name__ == "__main__": | |
| print("Starting application...") | |
| run_interface() |