File size: 1,718 Bytes
5bc07da
 
33cc7dc
5bc07da
33cc7dc
 
5bc07da
 
 
 
 
 
 
 
 
bae0d12
79e6dc7
 
 
 
 
 
 
5bc07da
 
 
79e6dc7
 
 
bae0d12
79e6dc7
5bc07da
 
79e6dc7
5bc07da
79e6dc7
 
 
5bc07da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
from huggingface_hub import InferenceClient
import os

API_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(token=API_TOKEN)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # بناء نص المحادثة كنص واحد مع أدوار واضحة
    conversation = f"System: {system_message}\n"
    for user_msg, assistant_msg in history:
        if user_msg:
            conversation += f"User: {user_msg}\n"
        if assistant_msg:
            conversation += f"Assistant: {assistant_msg}\n"
    conversation += f"User: {message}\nAssistant:"

    response = ""

    # استدعاء text_generation مع التدفق (stream=True)
    for output in client.text_generation(
        model="Alhdrawi/alhdrawi",
        prompt=conversation,  # هنا تم التعديل
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        stream=True,
    ):
        # كل مرة يجي جزء جديد من النص
        new_text = output.generated_text[len(response):]
        response += new_text
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()