from tensorboardX import SummaryWriter from .plotting import plot_waveform_to_numpy class MyWriter(SummaryWriter): def __init__(self, hp, logdir): super(MyWriter, self).__init__(logdir) self.sample_rate = hp.audio.sampling_rate self.is_first = True def log_training(self, g_loss, d_loss, step): self.add_scalar('train.g_loss', g_loss, step) self.add_scalar('train.d_loss', d_loss, step) def log_validation(self, g_loss, d_loss, generator, discriminator, target, prediction, step): self.add_scalar('validation.g_loss', g_loss, step) self.add_scalar('validation.d_loss', d_loss, step) self.add_audio('raw_audio_predicted', prediction, step, self.sample_rate) self.add_image('waveform_predicted', plot_waveform_to_numpy(prediction), step) self.log_histogram(generator, step) self.log_histogram(discriminator, step) if self.is_first: self.add_audio('raw_audio_target', target, step, self.sample_rate) self.add_image('waveform_target', plot_waveform_to_numpy(target), step) self.is_first = False def log_histogram(self, model, step): for tag, value in model.named_parameters(): self.add_histogram(tag.replace('.', '/'), value.cpu().detach().numpy(), step)