import os import glob import tqdm import torch import argparse from scipy.io.wavfile import write from model.generator import Generator from utils.hparams import HParam, load_hparam_str MAX_WAV_VALUE = 32768.0 def main(args): checkpoint = torch.load(args.checkpoint_path) if args.config is not None: hp = HParam(args.config) else: hp = load_hparam_str(checkpoint['hp_str']) model = Generator(hp.audio.n_mel_channels).cuda() model.load_state_dict(checkpoint['model_g']) model.eval(inference=False) with torch.no_grad(): for melpath in tqdm.tqdm(glob.glob(os.path.join(args.input_folder, '*.mel'))): mel = torch.load(melpath) if len(mel.shape) == 2: mel = mel.unsqueeze(0) mel = mel.cuda() audio = model.inference(mel) audio = audio.cpu().detach().numpy() out_path = melpath.replace('.mel', '_reconstructed_epoch%04d.wav' % checkpoint['epoch']) write(out_path, hp.audio.sampling_rate, audio) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default=None, help="yaml file for config. will use hp_str from checkpoint if not given.") parser.add_argument('-p', '--checkpoint_path', type=str, required=True, help="path of checkpoint pt file for evaluation") parser.add_argument('-i', '--input_folder', type=str, required=True, help="directory of mel-spectrograms to invert into raw audio. ") args = parser.parse_args() main(args)