Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,26 +9,26 @@ from melgan.model.generator import Generator
|
|
9 |
from melgan.utils.hparams import load_hparam
|
10 |
|
11 |
torch.manual_seed(1234)
|
12 |
-
|
13 |
-
|
14 |
-
# load trained tacotron2 + GST model:
|
15 |
-
model = load_model(hparams)
|
16 |
-
checkpoint_path = "trained_models/checkpoint_78000.model"
|
17 |
-
model.load_state_dict(torch.load(checkpoint_path)['state_dict'])
|
18 |
-
model.to('cuda')
|
19 |
-
_ = model.eval()
|
20 |
-
|
21 |
-
# load pre trained MelGAN model for mel2audio:
|
22 |
-
vocoder_checkpoint_path = "trained_models/nvidia_tacotron2_LJ11_epoch6400.pt"
|
23 |
-
checkpoint = torch.load(vocoder_checkpoint_path)
|
24 |
-
hp_melgan = load_hparam("melgan/config/default.yaml")
|
25 |
-
vocoder_model = Generator(80)
|
26 |
-
vocoder_model.load_state_dict(checkpoint['model_g'])
|
27 |
-
vocoder_model = vocoder_model.to('cuda')
|
28 |
-
vocoder_model.eval(inference=False)
|
29 |
-
|
30 |
-
gst_head_scores = np.array([0.5, 0.15, 0.35]) # originally ([0.5, 0.15, 0.35])
|
31 |
-
gst_scores = torch.from_numpy(gst_head_scores).cuda().float()
|
32 |
|
33 |
def synthesize(text):
|
34 |
sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
|
@@ -40,8 +40,13 @@ def synthesize(text):
|
|
40 |
with torch.no_grad():
|
41 |
audio = vocoder_model.inference(mel_outputs_postnet)
|
42 |
|
43 |
-
audio_numpy = audio.data.cpu().detach().numpy()
|
44 |
-
write(save_path, 22050, audio_numpy)
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from melgan.utils.hparams import load_hparam
|
10 |
|
11 |
torch.manual_seed(1234)
|
12 |
+
|
13 |
+
def init_models(hparams):
|
14 |
+
# load trained tacotron2 + GST model:
|
15 |
+
model = load_model(hparams)
|
16 |
+
checkpoint_path = "trained_models/checkpoint_78000.model"
|
17 |
+
model.load_state_dict(torch.load(checkpoint_path)['state_dict'])
|
18 |
+
model.to('cuda')
|
19 |
+
_ = model.eval()
|
20 |
+
|
21 |
+
# load pre trained MelGAN model for mel2audio:
|
22 |
+
vocoder_checkpoint_path = "trained_models/nvidia_tacotron2_LJ11_epoch6400.pt"
|
23 |
+
checkpoint = torch.load(vocoder_checkpoint_path)
|
24 |
+
hp_melgan = load_hparam("melgan/config/default.yaml")
|
25 |
+
vocoder_model = Generator(80)
|
26 |
+
vocoder_model.load_state_dict(checkpoint['model_g'])
|
27 |
+
vocoder_model = vocoder_model.to('cuda')
|
28 |
+
vocoder_model.eval(inference=False)
|
29 |
+
|
30 |
+
gst_head_scores = np.array([0.5, 0.15, 0.35]) # originally ([0.5, 0.15, 0.35])
|
31 |
+
gst_scores = torch.from_numpy(gst_head_scores).cuda().float()
|
32 |
|
33 |
def synthesize(text):
|
34 |
sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
|
|
|
40 |
with torch.no_grad():
|
41 |
audio = vocoder_model.inference(mel_outputs_postnet)
|
42 |
|
43 |
+
audio_numpy = audio.data.cpu().detach().numpy()
|
|
|
44 |
|
45 |
+
return [22050, audio_numpy]
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
|
49 |
+
init_models(hparams)
|
50 |
+
iface = gr.Interface(fn=synthesize, inputs="text", outputs="audio")
|
51 |
+
iface.launch()
|
52 |
+
|