Spaces:
Sleeping
Sleeping
Update melgan/utils/train.py
Browse files- melgan/utils/train.py +6 -6
melgan/utils/train.py
CHANGED
@@ -14,8 +14,8 @@ from .validation import validate
|
|
14 |
|
15 |
|
16 |
def train(args, pt_dir, chkpt_path, trainloader, valloader, writer, logger, hp, hp_str):
|
17 |
-
model_g = Generator(hp.audio.n_mel_channels)
|
18 |
-
model_d = MultiScaleDiscriminator()
|
19 |
|
20 |
optim_g = torch.optim.Adam(model_g.parameters(),
|
21 |
lr=hp.train.adam.lr, betas=(hp.train.adam.beta1, hp.train.adam.beta2))
|
@@ -62,10 +62,10 @@ def train(args, pt_dir, chkpt_path, trainloader, valloader, writer, logger, hp,
|
|
62 |
trainloader.dataset.shuffle_mapping()
|
63 |
loader = tqdm.tqdm(trainloader, desc='Loading train data')
|
64 |
for (melG, audioG), (melD, audioD) in loader:
|
65 |
-
melG = melG.cuda()
|
66 |
-
audioG = audioG.cuda()
|
67 |
-
melD = melD.cuda()
|
68 |
-
audioD = audioD.cuda()
|
69 |
|
70 |
# generator
|
71 |
optim_g.zero_grad()
|
|
|
14 |
|
15 |
|
16 |
def train(args, pt_dir, chkpt_path, trainloader, valloader, writer, logger, hp, hp_str):
|
17 |
+
model_g = Generator(hp.audio.n_mel_channels) # cuda()
|
18 |
+
model_d = MultiScaleDiscriminator() # cuda()
|
19 |
|
20 |
optim_g = torch.optim.Adam(model_g.parameters(),
|
21 |
lr=hp.train.adam.lr, betas=(hp.train.adam.beta1, hp.train.adam.beta2))
|
|
|
62 |
trainloader.dataset.shuffle_mapping()
|
63 |
loader = tqdm.tqdm(trainloader, desc='Loading train data')
|
64 |
for (melG, audioG), (melD, audioD) in loader:
|
65 |
+
# melG = melG.cuda()
|
66 |
+
# audioG = audioG.cuda()
|
67 |
+
# melD = melD.cuda()
|
68 |
+
# audioD = audioD.cuda()
|
69 |
|
70 |
# generator
|
71 |
optim_g.zero_grad()
|