Spaces:
Sleeping
Sleeping
File size: 1,777 Bytes
c61c48a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# modified from https://github.com/HarryVolek/PyTorch_Speaker_Verification
import os
import yaml
def load_hparam_str(hp_str):
path = 'temp-restore.yaml'
with open(path, 'w') as f:
f.write(hp_str)
ret = HParam(path)
os.remove(path)
return ret
def load_hparam(filename):
stream = open(filename, 'r')
docs = yaml.load_all(stream, Loader=yaml.Loader)
hparam_dict = dict()
for doc in docs:
for k, v in doc.items():
hparam_dict[k] = v
return hparam_dict
def merge_dict(user, default):
if isinstance(user, dict) and isinstance(default, dict):
for k, v in default.items():
if k not in user:
user[k] = v
else:
user[k] = merge_dict(user[k], v)
return user
class Dotdict(dict):
"""
a dictionary that supports dot notation
as well as dictionary access notation
usage: d = DotDict() or d = DotDict({'val1':'first'})
set attributes: d.val2 = 'second' or d['val2'] = 'second'
get attributes: d.val2 or d['val2']
"""
__getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def __init__(self, dct=None):
dct = dict() if not dct else dct
for key, value in dct.items():
if hasattr(value, 'keys'):
value = Dotdict(value)
self[key] = value
class HParam(Dotdict):
def __init__(self, file):
super(Dotdict, self).__init__()
hp_dict = load_hparam(file)
hp_dotdict = Dotdict(hp_dict)
for k, v in hp_dotdict.items():
setattr(self, k, v)
__getattr__ = Dotdict.__getitem__
__setattr__ = Dotdict.__setitem__
__delattr__ = Dotdict.__delitem__
|