File size: 2,910 Bytes
85e1f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import torch.nn as nn
import torch.nn.functional as F

from .res_stack import ResStack
# from res_stack import ResStack

MAX_WAV_VALUE = 32768.0


class Generator(nn.Module):
    def __init__(self, mel_channel):
        super(Generator, self).__init__()
        self.mel_channel = mel_channel

        self.generator = nn.Sequential(
            nn.ReflectionPad1d(3),
            nn.utils.weight_norm(nn.Conv1d(mel_channel, 512, kernel_size=7, stride=1)),

            nn.LeakyReLU(0.2),
            nn.utils.weight_norm(nn.ConvTranspose1d(512, 256, kernel_size=16, stride=8, padding=4)),

            ResStack(256),

            nn.LeakyReLU(0.2),
            nn.utils.weight_norm(nn.ConvTranspose1d(256, 128, kernel_size=16, stride=8, padding=4)),

            ResStack(128),

            nn.LeakyReLU(0.2),
            nn.utils.weight_norm(nn.ConvTranspose1d(128, 64, kernel_size=4, stride=2, padding=1)),

            ResStack(64),

            nn.LeakyReLU(0.2),
            nn.utils.weight_norm(nn.ConvTranspose1d(64, 32, kernel_size=4, stride=2, padding=1)),

            ResStack(32),

            nn.LeakyReLU(0.2),
            nn.ReflectionPad1d(3),
            nn.utils.weight_norm(nn.Conv1d(32, 1, kernel_size=7, stride=1)),
            nn.Tanh(),
        )

    def forward(self, mel):
        mel = (mel + 5.0) / 5.0 # roughly normalize spectrogram
        return self.generator(mel)

    def eval(self, inference=False):
        super(Generator, self).eval()

        # don't remove weight norm while validation in training loop
        if inference:
            self.remove_weight_norm()

    def remove_weight_norm(self):
        for idx, layer in enumerate(self.generator):
            if len(layer.state_dict()) != 0:
                try:
                    nn.utils.remove_weight_norm(layer)
                except:
                    layer.remove_weight_norm()

    def inference(self, mel):
        hop_length = 256
        # pad input mel with zeros to cut artifact
        # see https://github.com/seungwonpark/melgan/issues/8
        zero = torch.full((1, self.mel_channel, 10), -11.5129).to(mel.device)
        mel = torch.cat((mel, zero), dim=2)

        audio = self.forward(mel)
        audio = audio.squeeze() # collapse all dimension except time axis
        audio = audio[:-(hop_length*10)]
        audio = MAX_WAV_VALUE * audio
        audio = audio.clamp(min=-MAX_WAV_VALUE, max=MAX_WAV_VALUE-1)
        audio = audio.short()

        return audio


'''
    to run this, fix 
    from . import ResStack
    into
    from res_stack import ResStack
'''
if __name__ == '__main__':
    model = Generator(80)

    x = torch.randn(3, 80, 10)
    print(x.shape)

    y = model(x)
    print(y.shape)
    assert y.shape == torch.Size([3, 1, 2560])

    pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(pytorch_total_params)