Spaces:
Sleeping
Sleeping
File size: 1,643 Bytes
85e1f14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import os
import glob
import tqdm
import torch
import argparse
from scipy.io.wavfile import write
from model.generator import Generator
from utils.hparams import HParam, load_hparam_str
MAX_WAV_VALUE = 32768.0
def main(args):
checkpoint = torch.load(args.checkpoint_path)
if args.config is not None:
hp = HParam(args.config)
else:
hp = load_hparam_str(checkpoint['hp_str'])
model = Generator(hp.audio.n_mel_channels).cuda()
model.load_state_dict(checkpoint['model_g'])
model.eval(inference=False)
with torch.no_grad():
for melpath in tqdm.tqdm(glob.glob(os.path.join(args.input_folder, '*.mel'))):
mel = torch.load(melpath)
if len(mel.shape) == 2:
mel = mel.unsqueeze(0)
mel = mel.cuda()
audio = model.inference(mel)
audio = audio.cpu().detach().numpy()
out_path = melpath.replace('.mel', '_reconstructed_epoch%04d.wav' % checkpoint['epoch'])
write(out_path, hp.audio.sampling_rate, audio)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default=None,
help="yaml file for config. will use hp_str from checkpoint if not given.")
parser.add_argument('-p', '--checkpoint_path', type=str, required=True,
help="path of checkpoint pt file for evaluation")
parser.add_argument('-i', '--input_folder', type=str, required=True,
help="directory of mel-spectrograms to invert into raw audio. ")
args = parser.parse_args()
main(args)
|