Spaces:
Running
on
Zero
Running
on
Zero
| # PyTorch 2.8 (temporary hack) | |
| import os | |
| os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') | |
| # Actual demo code | |
| import spaces | |
| import torch | |
| from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline | |
| from diffusers.models.transformers.transformer_wan import WanTransformer3DModel | |
| from diffusers.utils.export_utils import export_to_video | |
| import gradio as gr | |
| import tempfile | |
| import numpy as np | |
| from PIL import Image | |
| import random | |
| from optimization import optimize_pipeline_ | |
| MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers" | |
| LANDSCAPE_WIDTH = 832 | |
| LANDSCAPE_HEIGHT = 480 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| FIXED_FPS = 24 | |
| MIN_FRAMES_MODEL = 8 | |
| MAX_FRAMES_MODEL = 81 | |
| pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, | |
| transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers', | |
| subfolder='transformer', | |
| torch_dtype=torch.bfloat16, | |
| device_map='cuda', | |
| ), | |
| transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers', | |
| subfolder='transformer_2', | |
| torch_dtype=torch.bfloat16, | |
| device_map='cuda', | |
| ), | |
| torch_dtype=torch.bfloat16, | |
| ).to('cuda') | |
| optimize_pipeline_(pipe, | |
| image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)), | |
| prompt='prompt', | |
| height=LANDSCAPE_HEIGHT, | |
| width=LANDSCAPE_WIDTH, | |
| num_frames=MAX_FRAMES_MODEL, | |
| ) | |
| default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
| default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走" | |
| def resize_image(image: Image.Image) -> Image.Image: | |
| if image.height > image.width: | |
| transposed = image.transpose(Image.Transpose.ROTATE_90) | |
| resized = resize_image_landscape(transposed) | |
| return resized.transpose(Image.Transpose.ROTATE_270) | |
| return resize_image_landscape(image) | |
| def resize_image_landscape(image: Image.Image) -> Image.Image: | |
| target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT | |
| width, height = image.size | |
| in_aspect = width / height | |
| if in_aspect > target_aspect: | |
| new_width = round(height * target_aspect) | |
| left = (width - new_width) // 2 | |
| image = image.crop((left, 0, left + new_width, height)) | |
| else: | |
| new_height = round(width / target_aspect) | |
| top = (height - new_height) // 2 | |
| image = image.crop((0, top, width, top + new_height)) | |
| return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS) | |
| def get_duration( | |
| input_image, | |
| prompt, | |
| negative_prompt, | |
| num_frames, | |
| guidance_scale, | |
| steps, | |
| seed, | |
| randomize_seed, | |
| progress, | |
| ): | |
| return steps * 15 | |
| def generate_video( | |
| input_image, | |
| prompt, | |
| negative_prompt=default_negative_prompt, | |
| num_frames = MAX_FRAMES_MODEL, | |
| guidance_scale = 3.5, | |
| steps = 28, | |
| seed = 42, | |
| randomize_seed = False, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if input_image is None: | |
| raise gr.Error("Please upload an input image.") | |
| current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
| resized_image = resize_image(input_image) | |
| output_frames_list = pipe( | |
| image=resized_image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=resized_image.height, | |
| width=resized_image.width, | |
| num_frames=num_frames, | |
| guidance_scale=float(guidance_scale), | |
| num_inference_steps=int(steps), | |
| generator=torch.Generator(device="cuda").manual_seed(current_seed), | |
| ).frames[0] | |
| with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
| video_path = tmpfile.name | |
| export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
| return video_path, current_seed | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Fast 4 steps Wan 2.2 Wan-AI/Wan2.2-I2V-A14B-Diffusers") | |
| #gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)") | |
| prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) | |
| num_frames_input = gr.Slider(minimum=MIN_FRAMES_MODEL, maximum=MAX_FRAMES_MODEL, step=1, value=MAX_FRAMES_MODEL, label="Frames") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
| seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
| randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
| steps_slider = gr.Slider(minimum=1, maximum=40, step=1, value=28, label="Inference Steps") | |
| guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale") | |
| generate_button = gr.Button("Generate Video", variant="primary") | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
| ui_inputs = [ | |
| input_image_component, prompt_input, | |
| negative_prompt_input, num_frames_input, | |
| guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox | |
| ] | |
| generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "wan_i2v_input.JPG", | |
| "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.", | |
| ], | |
| ], | |
| inputs=[input_image_component, prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch(mcp_server=True) | |