Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from diffusers import WanPipeline, AutoencoderKLWan | |
| from diffusers.utils import export_to_video | |
| import tempfile | |
| import os | |
| # Setup | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Load model and VAE once | |
| vae = AutoencoderKLWan.from_pretrained( | |
| "Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32 | |
| ) | |
| pipe = WanPipeline.from_pretrained( | |
| "Wan-AI/Wan2.2-T2V-A14B-Diffusers", vae=vae, torch_dtype=dtype | |
| ) | |
| pipe.to(device) | |
| # Core inference function | |
| def get_duration( | |
| prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps | |
| ): | |
| return steps * 15 | |
| def generate_video(prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps): | |
| with torch.autocast("cuda", dtype=dtype): | |
| output = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_frames=num_frames, | |
| guidance_scale=guidance_scale, | |
| guidance_scale_2=guidance_scale_2, | |
| num_inference_steps=num_steps, | |
| ).frames[0] | |
| temp_dir = tempfile.mkdtemp() | |
| video_path = os.path.join(temp_dir, "output.mp4") | |
| export_to_video(output, video_path, fps=16) | |
| return video_path | |
| # Gradio UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## 🐾 Wan2.2 T2V Demo – Gradio Edition") | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt", value="Two anthropomorphic cats in comfy boxing gear fight intensely.") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", value="色调艳丽,过曝,静态,细节模糊不清,字幕,最差质量,丑陋的,多余的手指,畸形") | |
| with gr.Row(): | |
| height = gr.Slider(360, 1024, value=720, step=16, label="Height") | |
| width = gr.Slider(360, 1920, value=1280, step=16, label="Width") | |
| with gr.Row(): | |
| num_frames = gr.Slider(16, 100, value=81, step=1, label="Number of Frames") | |
| num_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps") | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.5, label="Guidance Scale") | |
| guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.5, label="Guidance Scale 2") | |
| generate_btn = gr.Button("Generate Video") | |
| video_output = gr.Video(label="Generated Video") | |
| generate_btn.click( | |
| fn=generate_video, | |
| inputs=[prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps], | |
| outputs=video_output, | |
| ) | |
| demo.launch() | |