Spaces:
Sleeping
Sleeping
File size: 1,402 Bytes
4abc3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import os
import shutil
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
def create_vector_db(pdf_path, db_directory):
# Delete existing vector database if it exists
if os.path.exists(db_directory):
print(f"The vector database already exists at {db_directory}. Deleting it...")
shutil.rmtree(db_directory)
print(f"Deleted the existing vector database at {db_directory}.")
# Load the PDF
loader = PyPDFLoader(pdf_path)
documents = loader.load()
# Split the documents into manageable chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
docs = text_splitter.split_documents(documents)
# Load the embeddings model
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Create the vector database without deprecated settings
vectordb = Chroma.from_documents(
docs,
embedding=embeddings,
persist_directory=db_directory,
)
print(f"Vector database created at {db_directory}")
# Create vector database for PEI.pdf
create_vector_db("PEI.pdf", "./vector_db_PEI")
# Create vector database for guia.pdf
create_vector_db("guia.pdf", "./vector_db_guia")
|