Commit
·
fa7aa9f
1
Parent(s):
cc4fd89
create app
Browse files- .gitignore +183 -0
- requirements.txt +8 -3
- src/fine_tuned_model/config.json +37 -0
- src/fine_tuned_model/merges.txt +0 -0
- src/fine_tuned_model/model.safetensors +3 -0
- src/fine_tuned_model/special_tokens_map.json +15 -0
- src/fine_tuned_model/tokenizer.json +0 -0
- src/fine_tuned_model/tokenizer_config.json +58 -0
- src/fine_tuned_model/vocab.json +0 -0
- src/predict.py +473 -0
- src/streamlit_app.py +709 -40
- src/youtube.py +77 -0
.gitignore
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
.idea/
|
169 |
+
|
170 |
+
# Ruff stuff:
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# PyPI configuration file
|
174 |
+
.pypirc
|
175 |
+
|
176 |
+
# Streamlit Secrets
|
177 |
+
.streamlit/
|
178 |
+
|
179 |
+
# Youtube Links
|
180 |
+
src/link.txt
|
181 |
+
|
182 |
+
# Test files
|
183 |
+
src/test_plotly_script.py
|
requirements.txt
CHANGED
@@ -1,3 +1,8 @@
|
|
1 |
-
altair
|
2 |
-
pandas
|
3 |
-
streamlit
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==5.5.0
|
2 |
+
pandas==2.2.2
|
3 |
+
streamlit==1.45.0
|
4 |
+
torch==2.5.1
|
5 |
+
transformers==4.46.2
|
6 |
+
regex==2024.11.6
|
7 |
+
plotly==6.0.1
|
8 |
+
google-api-python-client==2.169.0
|
src/fine_tuned_model/config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "negative",
|
14 |
+
"1": "neutral",
|
15 |
+
"2": "positive"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"negative": 0,
|
21 |
+
"neutral": 1,
|
22 |
+
"positive": 2
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-05,
|
25 |
+
"max_position_embeddings": 514,
|
26 |
+
"model_type": "roberta",
|
27 |
+
"num_attention_heads": 12,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 1,
|
30 |
+
"position_embedding_type": "absolute",
|
31 |
+
"problem_type": "single_label_classification",
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.51.3",
|
34 |
+
"type_vocab_size": 1,
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 50265
|
37 |
+
}
|
src/fine_tuned_model/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/fine_tuned_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff26327999e09e76218bd59e2f78b1445a2720ea58fb27c15f47ae3f1e6cd42e
|
3 |
+
size 498615900
|
src/fine_tuned_model/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
src/fine_tuned_model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/fine_tuned_model/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": false,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"extra_special_tokens": {},
|
51 |
+
"mask_token": "<mask>",
|
52 |
+
"model_max_length": 512,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"tokenizer_class": "RobertaTokenizer",
|
56 |
+
"trim_offsets": true,
|
57 |
+
"unk_token": "<unk>"
|
58 |
+
}
|
src/fine_tuned_model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/predict.py
ADDED
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/predict.py
|
2 |
+
|
3 |
+
import os # To help build file paths correctly
|
4 |
+
import torch # PyTorch library, for tensors and model operations
|
5 |
+
from transformers import (
|
6 |
+
AutoModelForSequenceClassification,
|
7 |
+
AutoTokenizer,
|
8 |
+
) # Hugging Face stuff for models
|
9 |
+
|
10 |
+
|
11 |
+
# --- Configuration ---
|
12 |
+
# This is where our fine-tuned model and tokenizer files are stored
|
13 |
+
# Assuming 'fine_tuned_model' directory is inside 'src/' and next to this predict.py file
|
14 |
+
_SCRIPT_DIR = os.path.dirname(
|
15 |
+
os.path.abspath(__file__)
|
16 |
+
) # Gets the directory where this script is
|
17 |
+
MODEL_PATH = os.path.join(
|
18 |
+
_SCRIPT_DIR, "fine_tuned_model"
|
19 |
+
) # User confirmed this variable name and directory
|
20 |
+
|
21 |
+
print(f"DEBUG (predict.py): Model path set to: {MODEL_PATH}") # For checking the path
|
22 |
+
|
23 |
+
# --- Device Setup ---
|
24 |
+
# Check if a GPU is available, otherwise use CPU
|
25 |
+
# Using GPU makes predictions much faster!
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
device = torch.device("cuda")
|
28 |
+
# Trying to get the name of the GPU, just for information
|
29 |
+
try:
|
30 |
+
gpu_name = torch.cuda.get_device_name(0)
|
31 |
+
print(f"INFO (predict.py): GPU is available ({gpu_name}), using CUDA.")
|
32 |
+
except Exception as e:
|
33 |
+
print(
|
34 |
+
f"INFO (predict.py): GPU is available, using CUDA. (Could not get GPU name: {e})"
|
35 |
+
)
|
36 |
+
else:
|
37 |
+
device = torch.device("cpu")
|
38 |
+
print(
|
39 |
+
"INFO (predict.py): GPU not available, using CPU. Predictions might be slower."
|
40 |
+
)
|
41 |
+
|
42 |
+
# --- Load Model and Tokenizer ---
|
43 |
+
# We load these once when the script (or module) is first loaded.
|
44 |
+
# This is much better than loading them every time we want to predict.
|
45 |
+
model = None
|
46 |
+
tokenizer = None
|
47 |
+
id2label_mapping = {0: "negative", 1: "neutral", 2: "positive"} # Default mapping
|
48 |
+
|
49 |
+
try:
|
50 |
+
print(f"INFO (predict.py): Loading model from {MODEL_PATH}...")
|
51 |
+
# Load the pre-trained model for sequence classification
|
52 |
+
# This should be the PyTorch RoBERTa model we fine-tuned
|
53 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
54 |
+
model.to(device) # Move the model to the GPU (or CPU if no GPU)
|
55 |
+
model.eval() # Set the model to evaluation mode (important for layers like Dropout)
|
56 |
+
print("INFO (predict.py): Model loaded successfully and set to evaluation mode.")
|
57 |
+
|
58 |
+
print(f"INFO (predict.py): Loading tokenizer from {MODEL_PATH}...")
|
59 |
+
# Load the tokenizer that matches the model
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
61 |
+
print("INFO (predict.py): Tokenizer loaded successfully.")
|
62 |
+
|
63 |
+
# Get the label mapping from the model's configuration
|
64 |
+
# This was saved during fine-tuning
|
65 |
+
if hasattr(model.config, "id2label") and model.config.id2label:
|
66 |
+
id2label_mapping = model.config.id2label
|
67 |
+
# Convert string keys from config.json to int if necessary
|
68 |
+
id2label_mapping = {int(k): v for k, v in id2label_mapping.items()}
|
69 |
+
print(
|
70 |
+
f"INFO (predict.py): Loaded id2label mapping from model config: {id2label_mapping}"
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
print(
|
74 |
+
"WARN (predict.py): id2label not found in model config, using default mapping."
|
75 |
+
)
|
76 |
+
|
77 |
+
except FileNotFoundError:
|
78 |
+
print(f"--- CRITICAL ERROR (predict.py) ---")
|
79 |
+
print(f"Model or Tokenizer files NOT FOUND at the specified path: {MODEL_PATH}")
|
80 |
+
print(
|
81 |
+
f"Please ensure the '{os.path.basename(MODEL_PATH)}' directory exists at '{_SCRIPT_DIR}' and contains all necessary model files (pytorch_model.bin/model.safetensors, config.json, tokenizer files, etc.)."
|
82 |
+
)
|
83 |
+
# Keep model and tokenizer as None, so predict_sentiments can handle it
|
84 |
+
except Exception as e:
|
85 |
+
print(f"--- ERROR (predict.py) ---")
|
86 |
+
print(f"An unexpected error occurred loading model or tokenizer: {e}")
|
87 |
+
# Keep model and tokenizer as None
|
88 |
+
|
89 |
+
|
90 |
+
# --- Preprocessing Function ---
|
91 |
+
# Same function we used for training data to make sure inputs are consistent
|
92 |
+
def preprocess_tweet(text):
|
93 |
+
"""Replaces @user mentions and http links with placeholders."""
|
94 |
+
preprocessed_text = []
|
95 |
+
if text is None:
|
96 |
+
return "" # Handle None input
|
97 |
+
# Split text into parts by space
|
98 |
+
for t in text.split(" "):
|
99 |
+
if len(t) > 0: # Avoid processing empty parts from multiple spaces
|
100 |
+
t = "@user" if t.startswith("@") else t # Replace mentions
|
101 |
+
t = "http" if t.startswith("http") else t # Replace links
|
102 |
+
preprocessed_text.append(t)
|
103 |
+
return " ".join(preprocessed_text) # Put the parts back together
|
104 |
+
|
105 |
+
|
106 |
+
# --- Prediction Function (UPDATED to return probabilities) ---
|
107 |
+
def predict_sentiments(comment_list: list):
|
108 |
+
"""
|
109 |
+
Predicts sentiments for a list of comment strings.
|
110 |
+
Returns a list of dictionaries, each containing the predicted label
|
111 |
+
and the probabilities (scores) for each class.
|
112 |
+
e.g., [{'label': 'positive', 'scores': {'negative': 0.1, 'neutral': 0.2, 'positive': 0.7}}, ...]
|
113 |
+
"""
|
114 |
+
# Check if model and tokenizer are ready
|
115 |
+
if model is None or tokenizer is None:
|
116 |
+
print(
|
117 |
+
"ERROR (predict.py - predict_sentiments): Model or Tokenizer not loaded. Cannot predict."
|
118 |
+
)
|
119 |
+
# Return an error structure
|
120 |
+
return [{"label": "Error: Model not loaded", "scores": {}}] * len(comment_list)
|
121 |
+
|
122 |
+
if not comment_list: # Handle empty input list
|
123 |
+
return []
|
124 |
+
|
125 |
+
"""
|
126 |
+
# Preprocess comments first
|
127 |
+
processed_comments = [preprocess_tweet(comment) for comment in comment_list]
|
128 |
+
|
129 |
+
# Tokenize the batch
|
130 |
+
print(
|
131 |
+
f"DEBUG (predict.py): Tokenizing {len(processed_comments)} comments for prediction..."
|
132 |
+
)
|
133 |
+
inputs = tokenizer(
|
134 |
+
processed_comments,
|
135 |
+
padding=True,
|
136 |
+
truncation=True,
|
137 |
+
return_tensors="pt", # PyTorch tensors
|
138 |
+
max_length=(
|
139 |
+
tokenizer.model_max_length
|
140 |
+
if hasattr(tokenizer, "model_max_length") and tokenizer.model_max_length
|
141 |
+
else 512
|
142 |
+
),
|
143 |
+
)
|
144 |
+
|
145 |
+
# Move inputs to the correct device
|
146 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
147 |
+
|
148 |
+
results_list = [] # To store the dictionaries
|
149 |
+
try:
|
150 |
+
# Perform inference without calculating gradients
|
151 |
+
with torch.no_grad():
|
152 |
+
outputs = model(**inputs)
|
153 |
+
logits = outputs.logits
|
154 |
+
|
155 |
+
# Apply Softmax to convert logits to probabilities
|
156 |
+
# dim=-1 applies softmax across the last dimension (the classes)
|
157 |
+
probabilities = torch.softmax(logits, dim=-1)
|
158 |
+
|
159 |
+
# Get the predicted class IDs (index of the highest probability)
|
160 |
+
predicted_class_ids = torch.argmax(probabilities, dim=-1)
|
161 |
+
|
162 |
+
# Move results to CPU and convert to Python lists/numpy for easier handling
|
163 |
+
probs_list = (
|
164 |
+
probabilities.cpu().numpy().tolist()
|
165 |
+
) # List of lists of probabilities
|
166 |
+
ids_list = predicted_class_ids.cpu().numpy().tolist() # List of predicted IDs
|
167 |
+
|
168 |
+
print(
|
169 |
+
f"DEBUG (predict.py): Probabilities and IDs calculated. Batch size: {len(ids_list)}"
|
170 |
+
)
|
171 |
+
|
172 |
+
# Format the output: list of dictionaries
|
173 |
+
for i in range(len(ids_list)):
|
174 |
+
pred_id = ids_list[i]
|
175 |
+
# Map predicted ID to label string using the mapping from model config
|
176 |
+
pred_label = id2label_mapping.get(pred_id, "Unknown")
|
177 |
+
|
178 |
+
# Create the dictionary of scores {label_name: probability}
|
179 |
+
pred_scores = {
|
180 |
+
label_name: probs_list[i][label_id]
|
181 |
+
for label_id, label_name in id2label_mapping.items()
|
182 |
+
# Ensure index is within bounds, just in case
|
183 |
+
if 0 <= label_id < probabilities.shape[-1]
|
184 |
+
}
|
185 |
+
|
186 |
+
# Append the result for this comment
|
187 |
+
results_list.append({"label": pred_label, "scores": pred_scores})
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
print(f"--- ERROR (predict.py - predict_sentiments) ---")
|
191 |
+
print(f"Error during sentiment prediction inference or formatting: {e}")
|
192 |
+
import traceback
|
193 |
+
|
194 |
+
traceback.print_exc() # Print full traceback for debugging
|
195 |
+
# Return error structure for each comment
|
196 |
+
results_list = [
|
197 |
+
{"label": "Error: Prediction failed", "scores": {}} for _ in comment_list
|
198 |
+
]
|
199 |
+
|
200 |
+
return results_list # Return the list of dictionaries
|
201 |
+
"""
|
202 |
+
|
203 |
+
inference_batch_size = 64 # You can adjust this number based on performance/memory
|
204 |
+
print(
|
205 |
+
f"INFO (predict.py): Predicting sentiments for {len(comment_list)} comments in batches of {inference_batch_size}..."
|
206 |
+
)
|
207 |
+
|
208 |
+
all_results_list = [] # We'll collect results for all batches here
|
209 |
+
|
210 |
+
# --- Loop through the comment list in batches ---
|
211 |
+
try:
|
212 |
+
total_comments = len(comment_list)
|
213 |
+
# This loop goes from 0 to total_comments, jumping by inference_batch_size each time
|
214 |
+
for i in range(0, total_comments, inference_batch_size):
|
215 |
+
# Get the current slice of comments for this batch
|
216 |
+
batch_comments = comment_list[i : i + inference_batch_size]
|
217 |
+
|
218 |
+
# Just printing progress for long lists
|
219 |
+
current_batch_num = i // inference_batch_size + 1
|
220 |
+
total_batches = (
|
221 |
+
total_comments + inference_batch_size - 1
|
222 |
+
) // inference_batch_size
|
223 |
+
print(
|
224 |
+
f"DEBUG (predict.py): Processing batch {current_batch_num}/{total_batches}..."
|
225 |
+
)
|
226 |
+
|
227 |
+
# --- Process ONLY the current batch ---
|
228 |
+
# 1. Preprocess this specific batch
|
229 |
+
processed_batch = [preprocess_tweet(comment) for comment in batch_comments]
|
230 |
+
|
231 |
+
# 2. Tokenize this batch
|
232 |
+
# Tokenizer handles padding within this smaller batch
|
233 |
+
inputs = tokenizer(
|
234 |
+
processed_batch,
|
235 |
+
padding=True,
|
236 |
+
truncation=True,
|
237 |
+
return_tensors="pt",
|
238 |
+
max_length=(
|
239 |
+
tokenizer.model_max_length
|
240 |
+
if hasattr(tokenizer, "model_max_length")
|
241 |
+
and tokenizer.model_max_length
|
242 |
+
else 512
|
243 |
+
),
|
244 |
+
)
|
245 |
+
|
246 |
+
# 3. Move this batch's inputs to the device (GPU/CPU)
|
247 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
248 |
+
|
249 |
+
# 4. Make prediction for this batch - no need for gradients
|
250 |
+
with torch.no_grad():
|
251 |
+
outputs = model(**inputs)
|
252 |
+
logits = outputs.logits # Raw scores from the model for this batch
|
253 |
+
|
254 |
+
# 5. Calculate probabilities and get predicted class IDs for this batch
|
255 |
+
probabilities_batch = torch.softmax(logits, dim=-1)
|
256 |
+
predicted_class_ids_batch = torch.argmax(probabilities_batch, dim=-1)
|
257 |
+
|
258 |
+
# 6. Move results back to CPU, convert to lists for easier looping
|
259 |
+
probs_list_batch = probabilities_batch.cpu().numpy().tolist()
|
260 |
+
ids_list_batch = predicted_class_ids_batch.cpu().numpy().tolist()
|
261 |
+
|
262 |
+
# 7. Format results for each comment in THIS batch
|
263 |
+
batch_results = []
|
264 |
+
for j in range(len(ids_list_batch)):
|
265 |
+
pred_id = ids_list_batch[j]
|
266 |
+
pred_label = id2label_mapping.get(
|
267 |
+
pred_id, "Unknown"
|
268 |
+
) # Map ID to label name
|
269 |
+
# Create the scores dictionary for this comment
|
270 |
+
pred_scores = {
|
271 |
+
label_name: probs_list_batch[j][label_id]
|
272 |
+
for label_id, label_name in id2label_mapping.items()
|
273 |
+
if 0
|
274 |
+
<= label_id
|
275 |
+
< probabilities_batch.shape[-1] # Safety check for index
|
276 |
+
}
|
277 |
+
# Add the result for this comment
|
278 |
+
batch_results.append({"label": pred_label, "scores": pred_scores})
|
279 |
+
|
280 |
+
# Add the results from this completed batch to our main list
|
281 |
+
all_results_list.extend(batch_results)
|
282 |
+
# --- Finished processing current batch ---
|
283 |
+
|
284 |
+
print(
|
285 |
+
f"INFO (predict.py): Finished processing all {len(all_results_list)} comments."
|
286 |
+
)
|
287 |
+
|
288 |
+
except Exception as e:
|
289 |
+
# Catch errors that might happen during the loop
|
290 |
+
print(f"--- ERROR (predict.py - predict_sentiments loop) ---")
|
291 |
+
print(
|
292 |
+
f"An error occurred during batch prediction (around comment index {i}): {e}"
|
293 |
+
)
|
294 |
+
import traceback
|
295 |
+
|
296 |
+
traceback.print_exc() # Print full error details to console
|
297 |
+
# Try to return results for processed batches + error messages for the rest
|
298 |
+
num_processed = len(all_results_list)
|
299 |
+
num_remaining = len(comment_list) - num_processed
|
300 |
+
# Add error indicators for comments that couldn't be processed
|
301 |
+
all_results_list.extend(
|
302 |
+
[{"label": "Error: Batch failed", "scores": {}}] * num_remaining
|
303 |
+
)
|
304 |
+
|
305 |
+
# Return the list containing results for all comments
|
306 |
+
return all_results_list
|
307 |
+
|
308 |
+
|
309 |
+
# --- Main block for testing this script directly (UPDATED to show scores) ---
|
310 |
+
if __name__ == "__main__":
|
311 |
+
print("\n--- Testing predict.py Script Directly ---")
|
312 |
+
if model and tokenizer:
|
313 |
+
sample_comments_for_testing = [
|
314 |
+
"This is an amazing movie, I loved it!",
|
315 |
+
"I'm not sure how I feel about this, it was okay.",
|
316 |
+
"Worst experience ever, would not recommend.",
|
317 |
+
"The food was alright, but the service was slow.",
|
318 |
+
"What a fantastic day! #blessed",
|
319 |
+
"I hate waiting in long lines.",
|
320 |
+
"@user Check out http this is cool.",
|
321 |
+
"Just a normal sentence, nothing special here.",
|
322 |
+
"",
|
323 |
+
"This new update is absolutely terrible and full of bugs.",
|
324 |
+
]
|
325 |
+
|
326 |
+
print("\nInput Comments for Direct Test:")
|
327 |
+
for i, c in enumerate(sample_comments_for_testing):
|
328 |
+
print(f"{i+1}. '{c}'")
|
329 |
+
|
330 |
+
# Get predictions (now a list of dictionaries)
|
331 |
+
prediction_results = predict_sentiments(sample_comments_for_testing)
|
332 |
+
|
333 |
+
print("\nPredicted Sentiments and Scores (Direct Test):")
|
334 |
+
# Loop through the results list
|
335 |
+
for i, (comment, result) in enumerate(
|
336 |
+
zip(sample_comments_for_testing, prediction_results)
|
337 |
+
):
|
338 |
+
print(f"{i+1}. Comment: '{comment}'")
|
339 |
+
# Format scores nicely for printing
|
340 |
+
scores_dict = result.get("scores", {})
|
341 |
+
formatted_scores = ", ".join(
|
342 |
+
[f"{name}: {score:.3f}" for name, score in scores_dict.items()]
|
343 |
+
)
|
344 |
+
print(f" -> Predicted Label: {result.get('label', 'N/A')}")
|
345 |
+
# Also print the raw scores dictionary
|
346 |
+
print(f" -> Scores: {{{formatted_scores}}}")
|
347 |
+
print("--- Direct Test Finished ---")
|
348 |
+
else:
|
349 |
+
print("ERROR (predict.py - main test): Model and/or tokenizer not loaded.")
|
350 |
+
print(
|
351 |
+
f"Please check the MODEL_PATH ('{MODEL_PATH}') and ensure model files are present."
|
352 |
+
)
|
353 |
+
|
354 |
+
|
355 |
+
# # --- Prediction Function ---
|
356 |
+
# def predict_sentiments(comment_list: list):
|
357 |
+
# """
|
358 |
+
# Predicts sentiments for a list of comment strings.
|
359 |
+
# Returns a list of sentiment labels (e.g., "positive", "neutral", "negative").
|
360 |
+
# """
|
361 |
+
# # Check if model and tokenizer were loaded properly
|
362 |
+
# if model is None or tokenizer is None:
|
363 |
+
# print(
|
364 |
+
# "ERROR (predict.py - predict_sentiments): Model or Tokenizer not loaded. Cannot make predictions."
|
365 |
+
# )
|
366 |
+
# # Return an error message for each comment if model isn't ready
|
367 |
+
# return ["Error: Model not loaded"] * len(comment_list)
|
368 |
+
|
369 |
+
# if not comment_list: # If the input list is empty
|
370 |
+
# return []
|
371 |
+
|
372 |
+
# # First, preprocess all comments like we did for training data
|
373 |
+
# processed_comments = [preprocess_tweet(comment) for comment in comment_list]
|
374 |
+
|
375 |
+
# # Tokenize the processed comments
|
376 |
+
# # This turns text into numbers (input IDs, attention mask) for the model
|
377 |
+
# # padding=True: make all sequences in the batch the same length
|
378 |
+
# # truncation=True: cut off sequences longer than the model can handle
|
379 |
+
# # return_tensors="pt": return PyTorch tensors
|
380 |
+
# # max_length: ensure we don't exceed model's limit (e.g., 512 for RoBERTa)
|
381 |
+
# print(f"DEBUG (predict.py): Tokenizing {len(processed_comments)} comments...")
|
382 |
+
# inputs = tokenizer(
|
383 |
+
# processed_comments,
|
384 |
+
# padding=True,
|
385 |
+
# truncation=True,
|
386 |
+
# return_tensors="pt",
|
387 |
+
# max_length=(
|
388 |
+
# tokenizer.model_max_length
|
389 |
+
# if hasattr(tokenizer, "model_max_length") and tokenizer.model_max_length
|
390 |
+
# else 512
|
391 |
+
# ),
|
392 |
+
# )
|
393 |
+
|
394 |
+
# # Move the tokenized inputs to the same device as the model (GPU or CPU)
|
395 |
+
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
396 |
+
|
397 |
+
# sentiment_labels_as_strings = []
|
398 |
+
# try:
|
399 |
+
# # Make predictions
|
400 |
+
# # torch.no_grad() is important for inference:
|
401 |
+
# # it tells PyTorch not to calculate gradients, saving memory and speeding things up.
|
402 |
+
# with torch.no_grad():
|
403 |
+
# outputs = model(**inputs) # Get model outputs
|
404 |
+
# logits = outputs.logits # These are the raw scores from the final layer
|
405 |
+
|
406 |
+
# # Get the predicted class ID by finding the index with the highest score (logit)
|
407 |
+
# # logits shape is (batch_size, num_labels)
|
408 |
+
# predicted_class_ids = torch.argmax(
|
409 |
+
# logits, dim=-1
|
410 |
+
# ) # dim=-1 means find max along the last dimension
|
411 |
+
|
412 |
+
# # Convert the predicted class IDs (numbers) to actual sentiment labels (strings)
|
413 |
+
# # using the id2label_mapping we got from the model's config
|
414 |
+
# # .item() gets the Python number from a 0-dim PyTorch tensor
|
415 |
+
# sentiment_labels_as_strings = [
|
416 |
+
# id2label_mapping.get(class_id.item(), "Unknown")
|
417 |
+
# for class_id in predicted_class_ids
|
418 |
+
# ]
|
419 |
+
# print(
|
420 |
+
# f"DEBUG (predict.py): Predictions made. Example: {sentiment_labels_as_strings[:3] if sentiment_labels_as_strings else 'N/A'}"
|
421 |
+
# )
|
422 |
+
|
423 |
+
# except Exception as e:
|
424 |
+
# print(f"--- ERROR (predict.py - predict_sentiments) ---")
|
425 |
+
# print(f"Error during sentiment prediction inference: {e}")
|
426 |
+
# # Return an error message for each comment if prediction fails
|
427 |
+
# sentiment_labels_as_strings = ["Error: Prediction failed"] * len(comment_list)
|
428 |
+
|
429 |
+
# return sentiment_labels_as_strings
|
430 |
+
|
431 |
+
|
432 |
+
# # --- Main block for testing this script directly ---
|
433 |
+
# # This part only runs if you execute 'python src/predict.py' from the terminal
|
434 |
+
# # It won't run when app.py imports this file.
|
435 |
+
# if __name__ == "__main__":
|
436 |
+
# print("\n--- Testing predict.py Script Directly ---")
|
437 |
+
# # Check if model was loaded, otherwise can't test
|
438 |
+
# if model and tokenizer:
|
439 |
+
# sample_comments_for_testing = [
|
440 |
+
# "This is an amazing movie, I loved it!", # Expected: positive
|
441 |
+
# "I'm not sure how I feel about this, it was okay.", # Expected: neutral
|
442 |
+
# "Worst experience ever, would not recommend.", # Expected: negative
|
443 |
+
# "The food was alright, but the service was slow.", # Expected: neutral or negative
|
444 |
+
# "What a fantastic day! #blessed", # Expected: positive
|
445 |
+
# "I hate waiting in long lines.", # Expected: negative
|
446 |
+
# "@user Check out http this is cool.", # Test preprocessing, Expected: positive or neutral
|
447 |
+
# "Just a normal sentence, nothing special here.", # Expected: neutral
|
448 |
+
# "", # Empty string test
|
449 |
+
# "This new update is absolutely terrible and full of bugs.", # Expected: negative
|
450 |
+
# ]
|
451 |
+
|
452 |
+
# print("\nInput Comments for Direct Test:")
|
453 |
+
# for i, c in enumerate(sample_comments_for_testing):
|
454 |
+
# print(f"{i + 1}. '{c}'")
|
455 |
+
|
456 |
+
# # Get predictions using our main function
|
457 |
+
# predicted_sentiments = predict_sentiments(sample_comments_for_testing)
|
458 |
+
|
459 |
+
# print("\nPredicted Sentiments (Direct Test):")
|
460 |
+
# for i, (comment, sentiment) in enumerate(
|
461 |
+
# zip(sample_comments_for_testing, predicted_sentiments)
|
462 |
+
# ):
|
463 |
+
# print(
|
464 |
+
# f"{i + 1}. Comment: '{comment}'\n -> Predicted Sentiment: {sentiment}"
|
465 |
+
# )
|
466 |
+
# print("--- Direct Test Finished ---")
|
467 |
+
# else:
|
468 |
+
# print(
|
469 |
+
# "ERROR (predict.py - main test): Model and/or tokenizer not loaded. Cannot run direct test."
|
470 |
+
# )
|
471 |
+
# print(
|
472 |
+
# f"Please check the MODEL_PATH ('{MODEL_PATH}') and ensure model files are present."
|
473 |
+
# )
|
src/streamlit_app.py
CHANGED
@@ -1,40 +1,709 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# src/streamlit_app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import re # For robust YouTube video ID extraction
|
6 |
+
|
7 |
+
# Try to import Plotly, if not available, we'll use Streamlit's basic charts
|
8 |
+
try:
|
9 |
+
import plotly.express as px
|
10 |
+
|
11 |
+
PLOTLY_AVAILABLE = True
|
12 |
+
except ImportError:
|
13 |
+
PLOTLY_AVAILABLE = False
|
14 |
+
st.sidebar.warning(
|
15 |
+
"Plotly not installed. Charts will be basic. Consider 'pip install plotly'."
|
16 |
+
) # Optional warning
|
17 |
+
|
18 |
+
# Import our custom modules from the src directory
|
19 |
+
try:
|
20 |
+
from predict import (
|
21 |
+
predict_sentiments,
|
22 |
+
) # This function should return list of strings: "positive", "negative", "neutral"
|
23 |
+
from youtube import (
|
24 |
+
get_video_comments,
|
25 |
+
) # This function should return a list of comment strings
|
26 |
+
except ImportError as e:
|
27 |
+
st.error(
|
28 |
+
f"Failed to import necessary modules (predict.py, youtube.py). Ensure they are in the 'src' directory. Error: {e}"
|
29 |
+
)
|
30 |
+
# Stop the app if core modules are missing
|
31 |
+
st.stop()
|
32 |
+
|
33 |
+
|
34 |
+
def extract_video_id(url_or_id: str) -> str | None:
|
35 |
+
"""
|
36 |
+
Tries to get the YouTube video ID from different common URL types.
|
37 |
+
Also handles if the input is just the ID itself.
|
38 |
+
A bit of regex to find the ID part in common URLs.
|
39 |
+
"""
|
40 |
+
if not url_or_id:
|
41 |
+
return None
|
42 |
+
|
43 |
+
# Patterns for various YouTube URL formats
|
44 |
+
# Order matters: more specific patterns should come first if overlap exists
|
45 |
+
patterns = [
|
46 |
+
r"watch\?v=([a-zA-Z0-9_-]{11})", # Standard watch URL
|
47 |
+
r"youtu\.be/([a-zA-Z0-9_-]{11})", # Shortened URL
|
48 |
+
r"embed/([a-zA-Z0-9_-]{11})", # Embed URL
|
49 |
+
r"shorts/([a-zA-Z0-9_-]{11})", # Shorts URL
|
50 |
+
]
|
51 |
+
|
52 |
+
for pattern in patterns:
|
53 |
+
match = re.search(pattern, url_or_id)
|
54 |
+
if match:
|
55 |
+
return match.group(1) # The first capturing group is the ID
|
56 |
+
|
57 |
+
# If no pattern matches, check if the input itself is a valid 11-char ID
|
58 |
+
# Basic check: 11 chars, no spaces, not starting with http (already handled by regex above implicitly)
|
59 |
+
if len(url_or_id) == 11 and not (
|
60 |
+
"/" in url_or_id or "?" in url_or_id or "=" in url_or_id or "." in url_or_id
|
61 |
+
):
|
62 |
+
return url_or_id # Assume it's a direct ID
|
63 |
+
|
64 |
+
return None # Return None if no ID found
|
65 |
+
|
66 |
+
|
67 |
+
def analyze_youtube_video(video_url_or_id: str):
|
68 |
+
"""
|
69 |
+
Main function for the YouTube analysis part.
|
70 |
+
It gets comments, then predicts their sentiments.
|
71 |
+
Then it summarizes the results.
|
72 |
+
"""
|
73 |
+
video_id = extract_video_id(video_url_or_id)
|
74 |
+
if not video_id:
|
75 |
+
# Give a more helpful error message to the user
|
76 |
+
st.error(
|
77 |
+
"Oops! That doesn't look like a valid YouTube URL or Video ID. Please check and try again. Example: Z9kGRMglw-I or youtu.be/3?v=Z9kGRMglw-I"
|
78 |
+
)
|
79 |
+
return None # Stop if no valid ID
|
80 |
+
|
81 |
+
summary_data = {} # Initialize
|
82 |
+
# comments_with_sentiments = [] # Initialize
|
83 |
+
|
84 |
+
try:
|
85 |
+
with st.spinner(f"Fetching comments & title for video ID: {video_id}..."):
|
86 |
+
video_data = get_video_comments(video_id)
|
87 |
+
comments_text_list = video_data.get("comments", [])
|
88 |
+
video_title = video_data.get("title", "Video Title Not Found")
|
89 |
+
print(
|
90 |
+
f"DEBUG (streamlit_app.py): Received title from youtube.py: '{video_title}'"
|
91 |
+
)
|
92 |
+
|
93 |
+
# Check if we actually got any comments
|
94 |
+
if not comments_text_list:
|
95 |
+
st.warning(
|
96 |
+
"Hmm, no comments found for this video. Are comments enabled? Or is it a very new video?"
|
97 |
+
)
|
98 |
+
# Provide a default empty summary structure
|
99 |
+
summary_data = {
|
100 |
+
"num_comments_fetched": 0,
|
101 |
+
"num_comments_analyzed": 0,
|
102 |
+
"positive": 0,
|
103 |
+
"neutral": 0,
|
104 |
+
"negative": 0,
|
105 |
+
"positive_percentage": 0,
|
106 |
+
"neutral_percentage": 0,
|
107 |
+
"negative_percentage": 0,
|
108 |
+
"num_valid_predictions": 0,
|
109 |
+
}
|
110 |
+
return {"summary": summary_data, "comments_data": []}
|
111 |
+
|
112 |
+
st.info(
|
113 |
+
f"Great! Found {len(comments_text_list)} comments. Now thinking about their feelings (sentiments)..."
|
114 |
+
)
|
115 |
+
# Another spinner for the prediction part, as this can be slow on CPU
|
116 |
+
with st.spinner("Analyzing sentiments with the model... Please wait."):
|
117 |
+
# This calls predict_sentiments from predict.py
|
118 |
+
# Expected to return: ["positive", "negative", "neutral", ...]
|
119 |
+
prediction_results = predict_sentiments(comments_text_list)
|
120 |
+
|
121 |
+
positive_count = 0
|
122 |
+
negative_count = 0
|
123 |
+
neutral_count = 0
|
124 |
+
error_count = 0
|
125 |
+
|
126 |
+
for result in prediction_results:
|
127 |
+
label = result.get("label")
|
128 |
+
if label == "positive":
|
129 |
+
positive_count += 1
|
130 |
+
elif label == "negative":
|
131 |
+
negative_count += 1
|
132 |
+
elif label == "neutral":
|
133 |
+
neutral_count += 1
|
134 |
+
else:
|
135 |
+
error_count += 1
|
136 |
+
|
137 |
+
num_valid_predictions = positive_count + negative_count + neutral_count
|
138 |
+
total_comments_processed = len(prediction_results)
|
139 |
+
if error_count > 0:
|
140 |
+
st.warning(
|
141 |
+
f"Could not predict sentiment properly for {error_count} comments."
|
142 |
+
)
|
143 |
+
|
144 |
+
summary_data = {
|
145 |
+
"video_title": video_title,
|
146 |
+
"num_comments_fetched": len(comments_text_list),
|
147 |
+
"num_comments_analyzed": total_comments_processed,
|
148 |
+
"num_valid_predictions": num_valid_predictions,
|
149 |
+
"positive": positive_count,
|
150 |
+
"negative": negative_count,
|
151 |
+
"neutral": neutral_count,
|
152 |
+
"positive_percentage": (
|
153 |
+
(positive_count / num_valid_predictions) * 100
|
154 |
+
if num_valid_predictions > 0
|
155 |
+
else 0
|
156 |
+
),
|
157 |
+
"neutral_percentage": (
|
158 |
+
(neutral_count / num_valid_predictions) * 100
|
159 |
+
if num_valid_predictions > 0
|
160 |
+
else 0
|
161 |
+
),
|
162 |
+
"negative_percentage": (
|
163 |
+
(negative_count / num_valid_predictions) * 100
|
164 |
+
if num_valid_predictions > 0
|
165 |
+
else 0
|
166 |
+
),
|
167 |
+
}
|
168 |
+
|
169 |
+
comments_data_for_df = []
|
170 |
+
for i in range(len(comments_text_list)):
|
171 |
+
comment_text = comments_text_list[i]
|
172 |
+
result = prediction_results[i]
|
173 |
+
label = result.get("label", "Error")
|
174 |
+
scores = result.get("scores", {})
|
175 |
+
confidence = max(scores.values()) if scores else 0.0
|
176 |
+
|
177 |
+
comments_data_for_df.append(
|
178 |
+
{
|
179 |
+
"Comment Text": comment_text,
|
180 |
+
"Predicted Sentiment": label,
|
181 |
+
"Confidence": confidence,
|
182 |
+
# "All Scores": scores
|
183 |
+
}
|
184 |
+
)
|
185 |
+
|
186 |
+
return {"summary": summary_data, "comments_data": comments_data_for_df}
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
# Show a general error if anything unexpected happens
|
190 |
+
st.error(f"Uh oh! An error popped up during analysis: {str(e)}")
|
191 |
+
# Also print to console for more detailed debugging when running locally
|
192 |
+
print(f"Full error in analyze_youtube_video: {e}")
|
193 |
+
import traceback
|
194 |
+
|
195 |
+
traceback.print_exc() # Print full traceback to console
|
196 |
+
return None # Return None on error
|
197 |
+
|
198 |
+
|
199 |
+
# --- Streamlit App UI ---
|
200 |
+
|
201 |
+
# Page configuration: Set to centered layout (default) instead of "wide"
|
202 |
+
st.set_page_config(page_title="Social Sentiment Analysis", layout="centered")
|
203 |
+
|
204 |
+
st.title("📊 SOCIAL SENTIMENT ANALYSIS")
|
205 |
+
# A little description for the user
|
206 |
+
st.write(
|
207 |
+
"""
|
208 |
+
Welcome to the **Social Sentiment Analyzer!** 👋
|
209 |
+
|
210 |
+
This application uses a fine-tuned RoBERTa model to predict the sentiment (Positive, Neutral, or Negative) expressed in text.
|
211 |
+
|
212 |
+
Use the tabs below to choose your input method:
|
213 |
+
* **Analyze Text Input:** Paste or type any English text directly.
|
214 |
+
* **YouTube Analysis:** Enter a YouTube video URL or ID to analyze its comments.
|
215 |
+
* **Twitter/X Analysis:** Support for analyzing Twitter/X posts is coming soon!
|
216 |
+
|
217 |
+
Select a tab to begin!
|
218 |
+
"""
|
219 |
+
)
|
220 |
+
|
221 |
+
# Tabs for different platforms, makes it easy to add Twitter later
|
222 |
+
tab_text_input, tab_youtube, tab_twitter = st.tabs(
|
223 |
+
["Analyze Text Input", "YouTube Analysis", "Twitter/X Analysis (Coming Soon!)"]
|
224 |
+
)
|
225 |
+
|
226 |
+
with tab_text_input:
|
227 |
+
# Header for this tab
|
228 |
+
st.header("Analyze Sentiment of Your Text")
|
229 |
+
st.write(
|
230 |
+
"Enter a sentence or a short paragraph below to see its predicted sentiment distribution."
|
231 |
+
)
|
232 |
+
|
233 |
+
# Use text_area for potentially longer input
|
234 |
+
# Giving it a unique key helps maintain state if needed
|
235 |
+
user_text = st.text_area(
|
236 |
+
"Enter text here:",
|
237 |
+
key="text_input_area_key",
|
238 |
+
height=100,
|
239 |
+
placeholder="Type or paste your text...",
|
240 |
+
)
|
241 |
+
|
242 |
+
# Button to trigger the analysis
|
243 |
+
if st.button("Analyze Text", key="text_input_analyze_btn"):
|
244 |
+
# Check if the user actually entered something (not just whitespace)
|
245 |
+
if user_text and not user_text.isspace():
|
246 |
+
# Show a spinner while processing
|
247 |
+
with st.spinner("Analyzing your text..."):
|
248 |
+
try:
|
249 |
+
# Call the prediction function from predict.py
|
250 |
+
# Pass the input text as a list with one element
|
251 |
+
prediction_results = predict_sentiments([user_text])
|
252 |
+
|
253 |
+
# Check if prediction was successful and returned expected format
|
254 |
+
if (
|
255 |
+
prediction_results
|
256 |
+
and isinstance(prediction_results, list)
|
257 |
+
and len(prediction_results) > 0
|
258 |
+
):
|
259 |
+
# Get the result dictionary for the single input text
|
260 |
+
result = prediction_results[0]
|
261 |
+
predicted_label = result.get("label")
|
262 |
+
scores = result.get(
|
263 |
+
"scores"
|
264 |
+
) # This should be a dict like {'negative': 0.1, ...}
|
265 |
+
|
266 |
+
# Make sure we got a valid label and scores dictionary
|
267 |
+
if (
|
268 |
+
predicted_label
|
269 |
+
and scores
|
270 |
+
and isinstance(scores, dict)
|
271 |
+
and predicted_label != "Error"
|
272 |
+
):
|
273 |
+
|
274 |
+
# Display the top predicted sentiment
|
275 |
+
st.subheader("Predicted Sentiment:")
|
276 |
+
# Using Streamlit's built-in status elements for color
|
277 |
+
if predicted_label == "positive":
|
278 |
+
st.success(
|
279 |
+
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 👍"
|
280 |
+
)
|
281 |
+
elif predicted_label == "negative":
|
282 |
+
st.error(
|
283 |
+
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 👎"
|
284 |
+
)
|
285 |
+
else: # Neutral or potentially "Unknown" if mapping failed
|
286 |
+
st.info(
|
287 |
+
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 😐"
|
288 |
+
)
|
289 |
+
|
290 |
+
st.write("---") # Adding a small separator
|
291 |
+
st.subheader(
|
292 |
+
"Detailed Probabilities:"
|
293 |
+
) # Subheader for this section
|
294 |
+
if scores and isinstance(scores, dict):
|
295 |
+
# Using columns here helps align the probabilities nicely
|
296 |
+
prob_col_neg, prob_col_neu, prob_col_pos = st.columns(3)
|
297 |
+
|
298 |
+
# Helper to get score safely
|
299 |
+
def get_score(sentiment_name):
|
300 |
+
return scores.get(
|
301 |
+
sentiment_name.lower(), 0.0
|
302 |
+
) # Use lowercase to be safe
|
303 |
+
|
304 |
+
value_font_size = "22px"
|
305 |
+
value_font_weight = "bold"
|
306 |
+
|
307 |
+
with prob_col_neg:
|
308 |
+
neg_prob = get_score("negative")
|
309 |
+
# Display label "Negative"
|
310 |
+
st.markdown("**Negative 👎:**")
|
311 |
+
# Display the probability, larger font, red color
|
312 |
+
st.markdown(
|
313 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:red;'>{neg_prob:.1%}</p>",
|
314 |
+
unsafe_allow_html=True,
|
315 |
+
)
|
316 |
+
|
317 |
+
with prob_col_neu:
|
318 |
+
neu_prob = get_score("neutral")
|
319 |
+
# Display label "Neutral"
|
320 |
+
st.markdown("**Neutral 😐:**")
|
321 |
+
# Display the probability, larger font, grey color
|
322 |
+
st.markdown(
|
323 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:grey;'>{neu_prob:.1%}</p>",
|
324 |
+
unsafe_allow_html=True,
|
325 |
+
)
|
326 |
+
|
327 |
+
with prob_col_pos:
|
328 |
+
pos_prob = get_score("positive")
|
329 |
+
# Display label "Positive"
|
330 |
+
st.markdown("**Positive 👍:**")
|
331 |
+
# Display the probability, larger font, green color
|
332 |
+
st.markdown(
|
333 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:green;'>{pos_prob:.1%}</p>",
|
334 |
+
unsafe_allow_html=True,
|
335 |
+
)
|
336 |
+
|
337 |
+
else:
|
338 |
+
# If scores dict is missing or invalid
|
339 |
+
st.write("Could not retrieve probability scores.")
|
340 |
+
st.write("---") # Another separator before the chart
|
341 |
+
|
342 |
+
# --- Display Pie Chart of Probabilities ---
|
343 |
+
st.subheader("Sentiment Probabilities:")
|
344 |
+
if PLOTLY_AVAILABLE:
|
345 |
+
# Convert the scores dictionary to a DataFrame suitable for Plotly
|
346 |
+
# Ensure keys match class_names for consistency if possible
|
347 |
+
# Assuming scores keys are 'negative', 'neutral', 'positive'
|
348 |
+
score_items = list(scores.items())
|
349 |
+
if score_items: # Check if scores dict is not empty
|
350 |
+
df_scores = pd.DataFrame(
|
351 |
+
score_items,
|
352 |
+
columns=["Sentiment", "Probability"],
|
353 |
+
)
|
354 |
+
# Convert Probability to numeric just in case
|
355 |
+
df_scores["Probability"] = pd.to_numeric(
|
356 |
+
df_scores["Probability"]
|
357 |
+
)
|
358 |
+
|
359 |
+
# Define colors (ensure keys match Sentiment names case)
|
360 |
+
color_map = {
|
361 |
+
"positive": "green",
|
362 |
+
"neutral": "grey",
|
363 |
+
"negative": "red",
|
364 |
+
}
|
365 |
+
# Make keys lowercase for robust mapping
|
366 |
+
df_scores["Sentiment"] = df_scores[
|
367 |
+
"Sentiment"
|
368 |
+
].str.capitalize()
|
369 |
+
df_scores["Sentiment_Lower"] = df_scores[
|
370 |
+
"Sentiment"
|
371 |
+
].str.lower()
|
372 |
+
color_map_lower = {
|
373 |
+
k.lower(): v for k, v in color_map.items()
|
374 |
+
}
|
375 |
+
|
376 |
+
# Debug print for the dataframe fed to plotly
|
377 |
+
# st.write("DEBUG: DataFrame for text input pie chart:")
|
378 |
+
# st.dataframe(df_scores)
|
379 |
+
|
380 |
+
try:
|
381 |
+
# Create the pie chart
|
382 |
+
fig_pie_text = px.pie(
|
383 |
+
df_scores,
|
384 |
+
values="Probability", # Use the probability column
|
385 |
+
names="Sentiment", # Labels for the slices
|
386 |
+
title="Probability Distribution per Class",
|
387 |
+
color="Sentiment_Lower", # Use lowercase for mapping
|
388 |
+
color_discrete_map=color_map_lower,
|
389 |
+
) # Map colors
|
390 |
+
|
391 |
+
# Update how text is shown on slices
|
392 |
+
fig_pie_text.update_traces(
|
393 |
+
textposition="inside",
|
394 |
+
textinfo="percent+label",
|
395 |
+
hovertemplate="Sentiment: %{label}<br>Probability: %{percent}",
|
396 |
+
)
|
397 |
+
# Maybe add hover info too
|
398 |
+
fig_pie_text.update_layout(
|
399 |
+
uniformtext_minsize=16,
|
400 |
+
uniformtext_mode="hide",
|
401 |
+
) # Improve text fitting
|
402 |
+
|
403 |
+
st.plotly_chart(
|
404 |
+
fig_pie_text, use_container_width=True
|
405 |
+
)
|
406 |
+
|
407 |
+
except Exception as plot_e:
|
408 |
+
st.error(
|
409 |
+
f"Sorry, couldn't create the probability pie chart: {str(plot_e)}"
|
410 |
+
)
|
411 |
+
print(
|
412 |
+
f"Full error during text input Plotly chart generation: {plot_e}"
|
413 |
+
)
|
414 |
+
import traceback
|
415 |
+
|
416 |
+
traceback.print_exc()
|
417 |
+
st.write(
|
418 |
+
"Raw scores:", scores
|
419 |
+
) # Show raw scores as fallback
|
420 |
+
|
421 |
+
else: # If scores dictionary was empty
|
422 |
+
st.warning(
|
423 |
+
"Received empty scores, cannot plot chart."
|
424 |
+
)
|
425 |
+
|
426 |
+
elif not PLOTLY_AVAILABLE:
|
427 |
+
st.warning(
|
428 |
+
"Plotly not installed, cannot display pie chart. Showing raw scores instead."
|
429 |
+
)
|
430 |
+
st.json(
|
431 |
+
scores
|
432 |
+
) # Display raw scores as JSON if no Plotly
|
433 |
+
else:
|
434 |
+
# This case should be covered by the check above, but for safety
|
435 |
+
st.write("No valid score data available to plot.")
|
436 |
+
# --- End Pie Chart ---
|
437 |
+
|
438 |
+
else:
|
439 |
+
# This handles cases where predict_sentiments returned an error label
|
440 |
+
st.error(
|
441 |
+
f"Sentiment analysis failed for the input text. Result: {result}"
|
442 |
+
)
|
443 |
+
|
444 |
+
else:
|
445 |
+
# This handles cases where predict_sentiments returned None or empty list
|
446 |
+
st.error(
|
447 |
+
"Received no valid result from the prediction function."
|
448 |
+
)
|
449 |
+
|
450 |
+
except Exception as analysis_e:
|
451 |
+
# Catch-all for other errors during analysis for this tab
|
452 |
+
st.error(
|
453 |
+
f"An error occurred during text analysis: {str(analysis_e)}"
|
454 |
+
)
|
455 |
+
print(f"Full error during text input analysis: {analysis_e}")
|
456 |
+
import traceback
|
457 |
+
|
458 |
+
traceback.print_exc()
|
459 |
+
|
460 |
+
else:
|
461 |
+
# If user clicks button without entering text
|
462 |
+
st.warning("Please enter some text in the text area first!")
|
463 |
+
|
464 |
+
with tab_youtube:
|
465 |
+
st.header("YouTube Comment Sentiment Analyzer")
|
466 |
+
# Input field for URL or ID
|
467 |
+
video_url_input = st.text_input(
|
468 |
+
"Enter YouTube Video URL or Video ID:",
|
469 |
+
key="youtube_url_input_key", # Giving it a unique key
|
470 |
+
placeholder="e.g., Z9kGRMglw-I or full URL",
|
471 |
+
)
|
472 |
+
|
473 |
+
# Button to trigger analysis
|
474 |
+
if st.button("Analyze YouTube Comments", key="youtube_analyze_button_key"):
|
475 |
+
if video_url_input: # Check if user actually entered something
|
476 |
+
# analyze_youtube_video handles spinners internally now
|
477 |
+
analysis_results = analyze_youtube_video(video_url_input)
|
478 |
+
|
479 |
+
if (
|
480 |
+
analysis_results and analysis_results["summary"]
|
481 |
+
): # Check if we got valid results
|
482 |
+
summary = analysis_results["summary"]
|
483 |
+
comments_data = analysis_results["comments_data"]
|
484 |
+
video_title_display = summary.get(
|
485 |
+
"video_title", "Video Title Not Available"
|
486 |
+
)
|
487 |
+
|
488 |
+
st.markdown("---")
|
489 |
+
# Displaying the video title using markdown for potential formatting later
|
490 |
+
st.markdown(f"### Analyzing Video: **{video_title_display}**")
|
491 |
+
st.markdown("---")
|
492 |
+
|
493 |
+
st.subheader("📊 Sentiment Summary")
|
494 |
+
|
495 |
+
# Define desired font sizes (you can adjust these)
|
496 |
+
# label_font_size = (
|
497 |
+
# "24px" # Font size for the label text like "Comments Fetched"
|
498 |
+
# )
|
499 |
+
label_font_size = "24px"
|
500 |
+
value_font_size = "28px" # Font size for the actual count like "137"
|
501 |
+
value_font_weight = "bold" # Make the count bold
|
502 |
+
|
503 |
+
# Define colors for the sentiment counts
|
504 |
+
positive_color = "green"
|
505 |
+
neutral_color = "grey"
|
506 |
+
negative_color = "red"
|
507 |
+
|
508 |
+
# Using 5 columns
|
509 |
+
col_fetched, col_analyzed, col_pos, col_neu, col_neg = st.columns(5)
|
510 |
+
|
511 |
+
# Metric 1: Comments Fetched
|
512 |
+
with col_fetched:
|
513 |
+
# Label for fetched comments
|
514 |
+
st.markdown(
|
515 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Comments Fetched</p>",
|
516 |
+
unsafe_allow_html=True,
|
517 |
+
)
|
518 |
+
# The number of fetched comments
|
519 |
+
st.markdown(
|
520 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; margin-top: 0px;'>{summary.get('num_comments_fetched', 0)}</p>",
|
521 |
+
unsafe_allow_html=True,
|
522 |
+
)
|
523 |
+
|
524 |
+
# Metric 2: Comments Analyzed
|
525 |
+
with col_analyzed:
|
526 |
+
# Label for analyzed comments
|
527 |
+
st.markdown(
|
528 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Comments Analyzed</p>",
|
529 |
+
unsafe_allow_html=True,
|
530 |
+
)
|
531 |
+
# The number of analyzed comments
|
532 |
+
st.markdown(
|
533 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; margin-top: 0px;'>{summary.get('num_comments_analyzed', 0)}</p>",
|
534 |
+
unsafe_allow_html=True,
|
535 |
+
)
|
536 |
+
|
537 |
+
# Metric 3: Positive
|
538 |
+
with col_pos:
|
539 |
+
# Label for positive comments, with emoji
|
540 |
+
st.markdown(
|
541 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Positive 👍</p>",
|
542 |
+
unsafe_allow_html=True,
|
543 |
+
)
|
544 |
+
# The count of positive comments, green and bold
|
545 |
+
st.markdown(
|
546 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{positive_color}; margin-top: 0px;'>{summary.get('positive', 0)}</p>",
|
547 |
+
unsafe_allow_html=True,
|
548 |
+
)
|
549 |
+
|
550 |
+
# Metric 4: Neutral
|
551 |
+
with col_neu:
|
552 |
+
# Label for neutral comments
|
553 |
+
st.markdown(
|
554 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Neutral 😐</p>",
|
555 |
+
unsafe_allow_html=True,
|
556 |
+
)
|
557 |
+
# The count of neutral comments, grey and bold
|
558 |
+
st.markdown(
|
559 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{neutral_color}; margin-top: 0px;'>{summary.get('neutral', 0)}</p>",
|
560 |
+
unsafe_allow_html=True,
|
561 |
+
)
|
562 |
+
|
563 |
+
# Metric 5: Negative
|
564 |
+
with col_neg:
|
565 |
+
# Label for negative comments
|
566 |
+
st.markdown(
|
567 |
+
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Negative 👎</p>",
|
568 |
+
unsafe_allow_html=True,
|
569 |
+
)
|
570 |
+
# The count of negative comments, red and bold
|
571 |
+
st.markdown(
|
572 |
+
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{negative_color}; margin-top: 0px;'>{summary.get('negative', 0)}</p>",
|
573 |
+
unsafe_allow_html=True,
|
574 |
+
)
|
575 |
+
|
576 |
+
# Add a visual separator before charts
|
577 |
+
st.markdown("---")
|
578 |
+
|
579 |
+
# Data for charts - make sure it has counts > 0
|
580 |
+
if summary.get("num_valid_predictions", 0) > 0:
|
581 |
+
# Prepare DataFrame for Plotly charts
|
582 |
+
sentiment_data_for_plot = [
|
583 |
+
{"Sentiment": "Positive", "Count": summary.get("positive", 0)},
|
584 |
+
{"Sentiment": "Neutral", "Count": summary.get("neutral", 0)},
|
585 |
+
{"Sentiment": "Negative", "Count": summary.get("negative", 0)},
|
586 |
+
]
|
587 |
+
sentiment_counts_df = pd.DataFrame(sentiment_data_for_plot)
|
588 |
+
# Filter out rows where Count is 0 for cleaner charts
|
589 |
+
sentiment_counts_df_for_plot = sentiment_counts_df[
|
590 |
+
sentiment_counts_df["Count"] > 0
|
591 |
+
].copy()
|
592 |
+
|
593 |
+
# Define the color map for charts
|
594 |
+
# Keys should match the 'Sentiment' column values
|
595 |
+
color_map = {
|
596 |
+
"Positive": "green",
|
597 |
+
"Neutral": "grey",
|
598 |
+
"Negative": "red",
|
599 |
+
}
|
600 |
+
|
601 |
+
if not sentiment_counts_df_for_plot.empty:
|
602 |
+
st.subheader("📈 Sentiment Distribution Charts")
|
603 |
+
# Try to use Plotly for richer charts
|
604 |
+
if PLOTLY_AVAILABLE:
|
605 |
+
try:
|
606 |
+
# Pie Chart (Corrected data input for Plotly)
|
607 |
+
# Plotly pie chart expects a DataFrame where one column is values, another is names
|
608 |
+
fig_pie = px.pie(
|
609 |
+
sentiment_counts_df_for_plot, # Use the filtered DataFrame
|
610 |
+
values="Count", # Column for pie slice values
|
611 |
+
names="Sentiment", # Column for pie slice names
|
612 |
+
title="Pie Chart: Comment Sentiments",
|
613 |
+
color="Sentiment", # Color slices based on the 'Sentiment' category
|
614 |
+
color_discrete_map=color_map,
|
615 |
+
) # Apply custom colors
|
616 |
+
|
617 |
+
fig_pie.update_traces(
|
618 |
+
textposition="inside",
|
619 |
+
textinfo="percent+label",
|
620 |
+
hovertemplate="Sentiment: %{label}<br>Count: %{value}<br>Percentage: %{percent}",
|
621 |
+
)
|
622 |
+
|
623 |
+
fig_pie.update_layout(
|
624 |
+
uniformtext_minsize=16, uniformtext_mode="hide"
|
625 |
+
)
|
626 |
+
|
627 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
628 |
+
|
629 |
+
# Bar Chart (Using Plotly for consistent coloring)
|
630 |
+
fig_bar = px.bar(
|
631 |
+
sentiment_counts_df_for_plot, # Use the filtered DataFrame
|
632 |
+
x="Sentiment", # Categories on X-axis
|
633 |
+
y="Count", # Values on Y-axis
|
634 |
+
title="Bar Chart: Comment Sentiments",
|
635 |
+
color="Sentiment", # Color bars based on 'Sentiment'
|
636 |
+
color_discrete_map=color_map, # Apply custom colors
|
637 |
+
labels={
|
638 |
+
"Count": "Number of Comments",
|
639 |
+
"Sentiment": "Sentiment Category",
|
640 |
+
},
|
641 |
+
) # Custom labels
|
642 |
+
st.plotly_chart(fig_bar, use_container_width=True)
|
643 |
+
|
644 |
+
except Exception as plot_e:
|
645 |
+
# Fallback if Plotly fails for some reason other than import
|
646 |
+
st.error(
|
647 |
+
f"Sorry, couldn't create Plotly charts: {plot_e}"
|
648 |
+
)
|
649 |
+
st.write(
|
650 |
+
"Displaying basic bar chart instead (default colors):"
|
651 |
+
)
|
652 |
+
st.bar_chart(
|
653 |
+
sentiment_counts_df.set_index("Sentiment")
|
654 |
+
) # Fallback with original (unfiltered for bar)
|
655 |
+
else:
|
656 |
+
# Fallback to Streamlit's basic bar chart if Plotly is not installed
|
657 |
+
st.write(
|
658 |
+
"Displaying basic bar chart (Plotly not installed):"
|
659 |
+
)
|
660 |
+
st.bar_chart(
|
661 |
+
sentiment_counts_df.set_index("Sentiment")
|
662 |
+
) # Basic bar chart
|
663 |
+
else:
|
664 |
+
# This message shows if all sentiment counts are zero
|
665 |
+
st.write(
|
666 |
+
"No sentiment data (Positive, Neutral, Negative all zero) to display in charts."
|
667 |
+
)
|
668 |
+
else:
|
669 |
+
# This message shows if no comments were analyzed successfully
|
670 |
+
st.write(
|
671 |
+
"Not enough valid sentiment data to display distribution charts."
|
672 |
+
)
|
673 |
+
|
674 |
+
# Display comments and their sentiments
|
675 |
+
if comments_data:
|
676 |
+
st.subheader(
|
677 |
+
f"🔍 Analyzed Comments (showing first {len(comments_data)} results)"
|
678 |
+
)
|
679 |
+
comments_display_df = pd.DataFrame(comments_data)
|
680 |
+
|
681 |
+
if "Confidence" in comments_display_df.columns:
|
682 |
+
try:
|
683 |
+
# Format as percentage with 1 decimal place
|
684 |
+
comments_display_df["Confidence"] = comments_display_df[
|
685 |
+
"Confidence"
|
686 |
+
].map("{:.1%}".format)
|
687 |
+
except (TypeError, ValueError):
|
688 |
+
st.warning(
|
689 |
+
"Could not format confidence scores."
|
690 |
+
) # Handle potential errors if confidence is not numeric
|
691 |
+
|
692 |
+
st.dataframe(
|
693 |
+
comments_display_df, use_container_width=True, height=400
|
694 |
+
)
|
695 |
+
else:
|
696 |
+
st.write("No comments were analyzed to display.")
|
697 |
+
# else: # analyze_youtube_video already handles its own errors by showing st.error
|
698 |
+
# st.info("Could not complete analysis. Please check the URL or try again.")
|
699 |
+
else:
|
700 |
+
# If user clicks button without entering URL
|
701 |
+
st.warning("Please enter a YouTube URL or Video ID first!")
|
702 |
+
|
703 |
+
with tab_twitter:
|
704 |
+
st.header("Twitter/X Post Analysis")
|
705 |
+
st.info("This feature is currently under construction. Please check back later!")
|
706 |
+
# Placeholder for future Twitter input
|
707 |
+
# twitter_url_input = st.text_input("Enter Twitter/X Post URL:", key="twitter_url_input_key")
|
708 |
+
# if st.button("Analyze Tweets", key="twitter_analyze_button_key"):
|
709 |
+
# st.write("Imagine amazing Twitter analysis happening here... Tweet tweet!")
|
src/youtube.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import googleapiclient.discovery
|
3 |
+
import googleapiclient.errors
|
4 |
+
|
5 |
+
# from dotenv import load_dotenv
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
# load_dotenv()
|
9 |
+
# api_key = os.getenv("API_KEY")
|
10 |
+
api_key = st.secrets["API_KEY"]
|
11 |
+
|
12 |
+
|
13 |
+
def get_comments(youtube, **kwargs):
|
14 |
+
comments = []
|
15 |
+
results = youtube.commentThreads().list(**kwargs).execute()
|
16 |
+
|
17 |
+
while results:
|
18 |
+
for item in results["items"]:
|
19 |
+
comment = item["snippet"]["topLevelComment"]["snippet"]["textDisplay"]
|
20 |
+
comments.append(comment)
|
21 |
+
|
22 |
+
# check if there are more comments
|
23 |
+
if "nextPageToken" in results:
|
24 |
+
kwargs["pageToken"] = results["nextPageToken"]
|
25 |
+
results = youtube.commentThreads().list(**kwargs).execute()
|
26 |
+
else:
|
27 |
+
break
|
28 |
+
|
29 |
+
return comments
|
30 |
+
|
31 |
+
|
32 |
+
def main(video_id, api_key):
|
33 |
+
# Disable OAuthlib's HTTPs verification when running locally.
|
34 |
+
os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1"
|
35 |
+
|
36 |
+
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
|
37 |
+
|
38 |
+
video_title = "N/A" # Provide a default title
|
39 |
+
|
40 |
+
try:
|
41 |
+
# Get video details using the videos().list endpoint
|
42 |
+
print(f"DEBUG (youtube.py): Fetching video details for ID: {video_id}")
|
43 |
+
video_response = (
|
44 |
+
youtube.videos()
|
45 |
+
.list(
|
46 |
+
part="snippet", # 'snippet' contains title, description, channel etc.
|
47 |
+
id=video_id, # The ID of the video we want info for
|
48 |
+
)
|
49 |
+
.execute()
|
50 |
+
)
|
51 |
+
|
52 |
+
# Extract the title from the response
|
53 |
+
# It's usually nested like this, good to check if 'items' exists
|
54 |
+
if video_response.get("items"):
|
55 |
+
video_title = video_response["items"][0]["snippet"]["title"]
|
56 |
+
print(f"DEBUG (youtube.py): Found title: '{video_title}'") # Just a check
|
57 |
+
else:
|
58 |
+
print(f"WARN (youtube.py): No video items found for ID: {video_id}")
|
59 |
+
video_title = "Video Not Found or Private" # More informative default
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
print(
|
63 |
+
f"ERROR (youtube.py): Failed to fetch video title for ID {video_id}. Error: {e}"
|
64 |
+
)
|
65 |
+
video_title = "Error Fetching Title" # Error specific default
|
66 |
+
# Depending on requirements, maybe we still want to proceed to get comments?
|
67 |
+
|
68 |
+
comments = get_comments(
|
69 |
+
youtube, part="snippet", videoId=video_id, textFormat="plainText"
|
70 |
+
)
|
71 |
+
# return comments
|
72 |
+
# Return a dictionary containing both title and comments
|
73 |
+
return {"title": video_title, "comments": comments}
|
74 |
+
|
75 |
+
|
76 |
+
def get_video_comments(video_id):
|
77 |
+
return main(video_id, api_key)
|