Commit
·
30fb34a
1
Parent(s):
d983ac1
update app
Browse files- src/streamlit_app.py +0 -709
src/streamlit_app.py
DELETED
|
@@ -1,709 +0,0 @@
|
|
| 1 |
-
# src/streamlit_app.py
|
| 2 |
-
|
| 3 |
-
import streamlit as st
|
| 4 |
-
import pandas as pd
|
| 5 |
-
import re # For robust YouTube video ID extraction
|
| 6 |
-
|
| 7 |
-
# Try to import Plotly, if not available, we'll use Streamlit's basic charts
|
| 8 |
-
try:
|
| 9 |
-
import plotly.express as px
|
| 10 |
-
|
| 11 |
-
PLOTLY_AVAILABLE = True
|
| 12 |
-
except ImportError:
|
| 13 |
-
PLOTLY_AVAILABLE = False
|
| 14 |
-
st.sidebar.warning(
|
| 15 |
-
"Plotly not installed. Charts will be basic. Consider 'pip install plotly'."
|
| 16 |
-
) # Optional warning
|
| 17 |
-
|
| 18 |
-
# Import our custom modules from the src directory
|
| 19 |
-
try:
|
| 20 |
-
from predict import (
|
| 21 |
-
predict_sentiments,
|
| 22 |
-
) # This function should return list of strings: "positive", "negative", "neutral"
|
| 23 |
-
from youtube import (
|
| 24 |
-
get_video_comments,
|
| 25 |
-
) # This function should return a list of comment strings
|
| 26 |
-
except ImportError as e:
|
| 27 |
-
st.error(
|
| 28 |
-
f"Failed to import necessary modules (predict.py, youtube.py). Ensure they are in the 'src' directory. Error: {e}"
|
| 29 |
-
)
|
| 30 |
-
# Stop the app if core modules are missing
|
| 31 |
-
st.stop()
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def extract_video_id(url_or_id: str):
|
| 35 |
-
"""
|
| 36 |
-
Tries to get the YouTube video ID from different common URL types.
|
| 37 |
-
Also handles if the input is just the ID itself.
|
| 38 |
-
A bit of regex to find the ID part in common URLs.
|
| 39 |
-
"""
|
| 40 |
-
if not url_or_id:
|
| 41 |
-
return None
|
| 42 |
-
|
| 43 |
-
# Patterns for various YouTube URL formats
|
| 44 |
-
# Order matters: more specific patterns should come first if overlap exists
|
| 45 |
-
patterns = [
|
| 46 |
-
r"watch\?v=([a-zA-Z0-9_-]{11})", # Standard watch URL
|
| 47 |
-
r"youtu\.be/([a-zA-Z0-9_-]{11})", # Shortened URL
|
| 48 |
-
r"embed/([a-zA-Z0-9_-]{11})", # Embed URL
|
| 49 |
-
r"shorts/([a-zA-Z0-9_-]{11})", # Shorts URL
|
| 50 |
-
]
|
| 51 |
-
|
| 52 |
-
for pattern in patterns:
|
| 53 |
-
match = re.search(pattern, url_or_id)
|
| 54 |
-
if match:
|
| 55 |
-
return match.group(1) # The first capturing group is the ID
|
| 56 |
-
|
| 57 |
-
# If no pattern matches, check if the input itself is a valid 11-char ID
|
| 58 |
-
# Basic check: 11 chars, no spaces, not starting with http (already handled by regex above implicitly)
|
| 59 |
-
if len(url_or_id) == 11 and not (
|
| 60 |
-
"/" in url_or_id or "?" in url_or_id or "=" in url_or_id or "." in url_or_id
|
| 61 |
-
):
|
| 62 |
-
return url_or_id # Assume it's a direct ID
|
| 63 |
-
|
| 64 |
-
return None # Return None if no ID found
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def analyze_youtube_video(video_url_or_id: str):
|
| 68 |
-
"""
|
| 69 |
-
Main function for the YouTube analysis part.
|
| 70 |
-
It gets comments, then predicts their sentiments.
|
| 71 |
-
Then it summarizes the results.
|
| 72 |
-
"""
|
| 73 |
-
video_id = extract_video_id(video_url_or_id)
|
| 74 |
-
if not video_id:
|
| 75 |
-
# Give a more helpful error message to the user
|
| 76 |
-
st.error(
|
| 77 |
-
"Oops! That doesn't look like a valid YouTube URL or Video ID. Please check and try again. Example: Z9kGRMglw-I or youtu.be/3?v=Z9kGRMglw-I"
|
| 78 |
-
)
|
| 79 |
-
return None # Stop if no valid ID
|
| 80 |
-
|
| 81 |
-
summary_data = {} # Initialize
|
| 82 |
-
# comments_with_sentiments = [] # Initialize
|
| 83 |
-
|
| 84 |
-
try:
|
| 85 |
-
with st.spinner(f"Fetching comments & title for video ID: {video_id}..."):
|
| 86 |
-
video_data = get_video_comments(video_id)
|
| 87 |
-
comments_text_list = video_data.get("comments", [])
|
| 88 |
-
video_title = video_data.get("title", "Video Title Not Found")
|
| 89 |
-
print(
|
| 90 |
-
f"DEBUG (streamlit_app.py): Received title from youtube.py: '{video_title}'"
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
# Check if we actually got any comments
|
| 94 |
-
if not comments_text_list:
|
| 95 |
-
st.warning(
|
| 96 |
-
"Hmm, no comments found for this video. Are comments enabled? Or is it a very new video?"
|
| 97 |
-
)
|
| 98 |
-
# Provide a default empty summary structure
|
| 99 |
-
summary_data = {
|
| 100 |
-
"num_comments_fetched": 0,
|
| 101 |
-
"num_comments_analyzed": 0,
|
| 102 |
-
"positive": 0,
|
| 103 |
-
"neutral": 0,
|
| 104 |
-
"negative": 0,
|
| 105 |
-
"positive_percentage": 0,
|
| 106 |
-
"neutral_percentage": 0,
|
| 107 |
-
"negative_percentage": 0,
|
| 108 |
-
"num_valid_predictions": 0,
|
| 109 |
-
}
|
| 110 |
-
return {"summary": summary_data, "comments_data": []}
|
| 111 |
-
|
| 112 |
-
st.info(
|
| 113 |
-
f"Great! Found {len(comments_text_list)} comments. Now thinking about their feelings (sentiments)..."
|
| 114 |
-
)
|
| 115 |
-
# Another spinner for the prediction part, as this can be slow on CPU
|
| 116 |
-
with st.spinner("Analyzing sentiments with the model... Please wait."):
|
| 117 |
-
# This calls predict_sentiments from predict.py
|
| 118 |
-
# Expected to return: ["positive", "negative", "neutral", ...]
|
| 119 |
-
prediction_results = predict_sentiments(comments_text_list)
|
| 120 |
-
|
| 121 |
-
positive_count = 0
|
| 122 |
-
negative_count = 0
|
| 123 |
-
neutral_count = 0
|
| 124 |
-
error_count = 0
|
| 125 |
-
|
| 126 |
-
for result in prediction_results:
|
| 127 |
-
label = result.get("label")
|
| 128 |
-
if label == "positive":
|
| 129 |
-
positive_count += 1
|
| 130 |
-
elif label == "negative":
|
| 131 |
-
negative_count += 1
|
| 132 |
-
elif label == "neutral":
|
| 133 |
-
neutral_count += 1
|
| 134 |
-
else:
|
| 135 |
-
error_count += 1
|
| 136 |
-
|
| 137 |
-
num_valid_predictions = positive_count + negative_count + neutral_count
|
| 138 |
-
total_comments_processed = len(prediction_results)
|
| 139 |
-
if error_count > 0:
|
| 140 |
-
st.warning(
|
| 141 |
-
f"Could not predict sentiment properly for {error_count} comments."
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
summary_data = {
|
| 145 |
-
"video_title": video_title,
|
| 146 |
-
"num_comments_fetched": len(comments_text_list),
|
| 147 |
-
"num_comments_analyzed": total_comments_processed,
|
| 148 |
-
"num_valid_predictions": num_valid_predictions,
|
| 149 |
-
"positive": positive_count,
|
| 150 |
-
"negative": negative_count,
|
| 151 |
-
"neutral": neutral_count,
|
| 152 |
-
"positive_percentage": (
|
| 153 |
-
(positive_count / num_valid_predictions) * 100
|
| 154 |
-
if num_valid_predictions > 0
|
| 155 |
-
else 0
|
| 156 |
-
),
|
| 157 |
-
"neutral_percentage": (
|
| 158 |
-
(neutral_count / num_valid_predictions) * 100
|
| 159 |
-
if num_valid_predictions > 0
|
| 160 |
-
else 0
|
| 161 |
-
),
|
| 162 |
-
"negative_percentage": (
|
| 163 |
-
(negative_count / num_valid_predictions) * 100
|
| 164 |
-
if num_valid_predictions > 0
|
| 165 |
-
else 0
|
| 166 |
-
),
|
| 167 |
-
}
|
| 168 |
-
|
| 169 |
-
comments_data_for_df = []
|
| 170 |
-
for i in range(len(comments_text_list)):
|
| 171 |
-
comment_text = comments_text_list[i]
|
| 172 |
-
result = prediction_results[i]
|
| 173 |
-
label = result.get("label", "Error")
|
| 174 |
-
scores = result.get("scores", {})
|
| 175 |
-
confidence = max(scores.values()) if scores else 0.0
|
| 176 |
-
|
| 177 |
-
comments_data_for_df.append(
|
| 178 |
-
{
|
| 179 |
-
"Comment Text": comment_text,
|
| 180 |
-
"Predicted Sentiment": label,
|
| 181 |
-
"Confidence": confidence,
|
| 182 |
-
# "All Scores": scores
|
| 183 |
-
}
|
| 184 |
-
)
|
| 185 |
-
|
| 186 |
-
return {"summary": summary_data, "comments_data": comments_data_for_df}
|
| 187 |
-
|
| 188 |
-
except Exception as e:
|
| 189 |
-
# Show a general error if anything unexpected happens
|
| 190 |
-
st.error(f"Uh oh! An error popped up during analysis: {str(e)}")
|
| 191 |
-
# Also print to console for more detailed debugging when running locally
|
| 192 |
-
print(f"Full error in analyze_youtube_video: {e}")
|
| 193 |
-
import traceback
|
| 194 |
-
|
| 195 |
-
traceback.print_exc() # Print full traceback to console
|
| 196 |
-
return None # Return None on error
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
# --- Streamlit App UI ---
|
| 200 |
-
|
| 201 |
-
# Page configuration: Set to centered layout (default) instead of "wide"
|
| 202 |
-
st.set_page_config(page_title="Social Sentiment Analysis", layout="centered")
|
| 203 |
-
|
| 204 |
-
st.title("📊 SOCIAL SENTIMENT ANALYSIS")
|
| 205 |
-
# A little description for the user
|
| 206 |
-
st.write(
|
| 207 |
-
"""
|
| 208 |
-
Welcome to the **Social Sentiment Analyzer!** 👋
|
| 209 |
-
|
| 210 |
-
This application uses a fine-tuned RoBERTa model to predict the sentiment (Positive, Neutral, or Negative) expressed in text.
|
| 211 |
-
|
| 212 |
-
Use the tabs below to choose your input method:
|
| 213 |
-
* **Analyze Text Input:** Paste or type any English text directly.
|
| 214 |
-
* **YouTube Analysis:** Enter a YouTube video URL or ID to analyze its comments.
|
| 215 |
-
* **Twitter/X Analysis:** Support for analyzing Twitter/X posts is coming soon!
|
| 216 |
-
|
| 217 |
-
Select a tab to begin!
|
| 218 |
-
"""
|
| 219 |
-
)
|
| 220 |
-
|
| 221 |
-
# Tabs for different platforms, makes it easy to add Twitter later
|
| 222 |
-
tab_text_input, tab_youtube, tab_twitter = st.tabs(
|
| 223 |
-
["Analyze Text Input", "YouTube Analysis", "Twitter/X Analysis (Coming Soon!)"]
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
with tab_text_input:
|
| 227 |
-
# Header for this tab
|
| 228 |
-
st.header("Analyze Sentiment of Your Text")
|
| 229 |
-
st.write(
|
| 230 |
-
"Enter a sentence or a short paragraph below to see its predicted sentiment distribution."
|
| 231 |
-
)
|
| 232 |
-
|
| 233 |
-
# Use text_area for potentially longer input
|
| 234 |
-
# Giving it a unique key helps maintain state if needed
|
| 235 |
-
user_text = st.text_area(
|
| 236 |
-
"Enter text here:",
|
| 237 |
-
key="text_input_area_key",
|
| 238 |
-
height=100,
|
| 239 |
-
placeholder="Type or paste your text...",
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
# Button to trigger the analysis
|
| 243 |
-
if st.button("Analyze Text", key="text_input_analyze_btn"):
|
| 244 |
-
# Check if the user actually entered something (not just whitespace)
|
| 245 |
-
if user_text and not user_text.isspace():
|
| 246 |
-
# Show a spinner while processing
|
| 247 |
-
with st.spinner("Analyzing your text..."):
|
| 248 |
-
try:
|
| 249 |
-
# Call the prediction function from predict.py
|
| 250 |
-
# Pass the input text as a list with one element
|
| 251 |
-
prediction_results = predict_sentiments([user_text])
|
| 252 |
-
|
| 253 |
-
# Check if prediction was successful and returned expected format
|
| 254 |
-
if (
|
| 255 |
-
prediction_results
|
| 256 |
-
and isinstance(prediction_results, list)
|
| 257 |
-
and len(prediction_results) > 0
|
| 258 |
-
):
|
| 259 |
-
# Get the result dictionary for the single input text
|
| 260 |
-
result = prediction_results[0]
|
| 261 |
-
predicted_label = result.get("label")
|
| 262 |
-
scores = result.get(
|
| 263 |
-
"scores"
|
| 264 |
-
) # This should be a dict like {'negative': 0.1, ...}
|
| 265 |
-
|
| 266 |
-
# Make sure we got a valid label and scores dictionary
|
| 267 |
-
if (
|
| 268 |
-
predicted_label
|
| 269 |
-
and scores
|
| 270 |
-
and isinstance(scores, dict)
|
| 271 |
-
and predicted_label != "Error"
|
| 272 |
-
):
|
| 273 |
-
|
| 274 |
-
# Display the top predicted sentiment
|
| 275 |
-
st.subheader("Predicted Sentiment:")
|
| 276 |
-
# Using Streamlit's built-in status elements for color
|
| 277 |
-
if predicted_label == "positive":
|
| 278 |
-
st.success(
|
| 279 |
-
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 👍"
|
| 280 |
-
)
|
| 281 |
-
elif predicted_label == "negative":
|
| 282 |
-
st.error(
|
| 283 |
-
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 👎"
|
| 284 |
-
)
|
| 285 |
-
else: # Neutral or potentially "Unknown" if mapping failed
|
| 286 |
-
st.info(
|
| 287 |
-
f"The model thinks the sentiment is: **{predicted_label.capitalize()}** 😐"
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
st.write("---") # Adding a small separator
|
| 291 |
-
st.subheader(
|
| 292 |
-
"Detailed Probabilities:"
|
| 293 |
-
) # Subheader for this section
|
| 294 |
-
if scores and isinstance(scores, dict):
|
| 295 |
-
# Using columns here helps align the probabilities nicely
|
| 296 |
-
prob_col_neg, prob_col_neu, prob_col_pos = st.columns(3)
|
| 297 |
-
|
| 298 |
-
# Helper to get score safely
|
| 299 |
-
def get_score(sentiment_name):
|
| 300 |
-
return scores.get(
|
| 301 |
-
sentiment_name.lower(), 0.0
|
| 302 |
-
) # Use lowercase to be safe
|
| 303 |
-
|
| 304 |
-
value_font_size = "22px"
|
| 305 |
-
value_font_weight = "bold"
|
| 306 |
-
|
| 307 |
-
with prob_col_neg:
|
| 308 |
-
neg_prob = get_score("negative")
|
| 309 |
-
# Display label "Negative"
|
| 310 |
-
st.markdown("**Negative 👎:**")
|
| 311 |
-
# Display the probability, larger font, red color
|
| 312 |
-
st.markdown(
|
| 313 |
-
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:red;'>{neg_prob:.1%}</p>",
|
| 314 |
-
unsafe_allow_html=True,
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
with prob_col_neu:
|
| 318 |
-
neu_prob = get_score("neutral")
|
| 319 |
-
# Display label "Neutral"
|
| 320 |
-
st.markdown("**Neutral 😐:**")
|
| 321 |
-
# Display the probability, larger font, grey color
|
| 322 |
-
st.markdown(
|
| 323 |
-
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:grey;'>{neu_prob:.1%}</p>",
|
| 324 |
-
unsafe_allow_html=True,
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
with prob_col_pos:
|
| 328 |
-
pos_prob = get_score("positive")
|
| 329 |
-
# Display label "Positive"
|
| 330 |
-
st.markdown("**Positive 👍:**")
|
| 331 |
-
# Display the probability, larger font, green color
|
| 332 |
-
st.markdown(
|
| 333 |
-
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:green;'>{pos_prob:.1%}</p>",
|
| 334 |
-
unsafe_allow_html=True,
|
| 335 |
-
)
|
| 336 |
-
|
| 337 |
-
else:
|
| 338 |
-
# If scores dict is missing or invalid
|
| 339 |
-
st.write("Could not retrieve probability scores.")
|
| 340 |
-
st.write("---") # Another separator before the chart
|
| 341 |
-
|
| 342 |
-
# --- Display Pie Chart of Probabilities ---
|
| 343 |
-
st.subheader("Sentiment Probabilities:")
|
| 344 |
-
if PLOTLY_AVAILABLE:
|
| 345 |
-
# Convert the scores dictionary to a DataFrame suitable for Plotly
|
| 346 |
-
# Ensure keys match class_names for consistency if possible
|
| 347 |
-
# Assuming scores keys are 'negative', 'neutral', 'positive'
|
| 348 |
-
score_items = list(scores.items())
|
| 349 |
-
if score_items: # Check if scores dict is not empty
|
| 350 |
-
df_scores = pd.DataFrame(
|
| 351 |
-
score_items,
|
| 352 |
-
columns=["Sentiment", "Probability"],
|
| 353 |
-
)
|
| 354 |
-
# Convert Probability to numeric just in case
|
| 355 |
-
df_scores["Probability"] = pd.to_numeric(
|
| 356 |
-
df_scores["Probability"]
|
| 357 |
-
)
|
| 358 |
-
|
| 359 |
-
# Define colors (ensure keys match Sentiment names case)
|
| 360 |
-
color_map = {
|
| 361 |
-
"positive": "green",
|
| 362 |
-
"neutral": "grey",
|
| 363 |
-
"negative": "red",
|
| 364 |
-
}
|
| 365 |
-
# Make keys lowercase for robust mapping
|
| 366 |
-
df_scores["Sentiment"] = df_scores[
|
| 367 |
-
"Sentiment"
|
| 368 |
-
].str.capitalize()
|
| 369 |
-
df_scores["Sentiment_Lower"] = df_scores[
|
| 370 |
-
"Sentiment"
|
| 371 |
-
].str.lower()
|
| 372 |
-
color_map_lower = {
|
| 373 |
-
k.lower(): v for k, v in color_map.items()
|
| 374 |
-
}
|
| 375 |
-
|
| 376 |
-
# Debug print for the dataframe fed to plotly
|
| 377 |
-
# st.write("DEBUG: DataFrame for text input pie chart:")
|
| 378 |
-
# st.dataframe(df_scores)
|
| 379 |
-
|
| 380 |
-
try:
|
| 381 |
-
# Create the pie chart
|
| 382 |
-
fig_pie_text = px.pie(
|
| 383 |
-
df_scores,
|
| 384 |
-
values="Probability", # Use the probability column
|
| 385 |
-
names="Sentiment", # Labels for the slices
|
| 386 |
-
title="Probability Distribution per Class",
|
| 387 |
-
color="Sentiment_Lower", # Use lowercase for mapping
|
| 388 |
-
color_discrete_map=color_map_lower,
|
| 389 |
-
) # Map colors
|
| 390 |
-
|
| 391 |
-
# Update how text is shown on slices
|
| 392 |
-
fig_pie_text.update_traces(
|
| 393 |
-
textposition="inside",
|
| 394 |
-
textinfo="percent+label",
|
| 395 |
-
hovertemplate="Sentiment: %{label}<br>Probability: %{percent}",
|
| 396 |
-
)
|
| 397 |
-
# Maybe add hover info too
|
| 398 |
-
fig_pie_text.update_layout(
|
| 399 |
-
uniformtext_minsize=16,
|
| 400 |
-
uniformtext_mode="hide",
|
| 401 |
-
) # Improve text fitting
|
| 402 |
-
|
| 403 |
-
st.plotly_chart(
|
| 404 |
-
fig_pie_text, use_container_width=True
|
| 405 |
-
)
|
| 406 |
-
|
| 407 |
-
except Exception as plot_e:
|
| 408 |
-
st.error(
|
| 409 |
-
f"Sorry, couldn't create the probability pie chart: {str(plot_e)}"
|
| 410 |
-
)
|
| 411 |
-
print(
|
| 412 |
-
f"Full error during text input Plotly chart generation: {plot_e}"
|
| 413 |
-
)
|
| 414 |
-
import traceback
|
| 415 |
-
|
| 416 |
-
traceback.print_exc()
|
| 417 |
-
st.write(
|
| 418 |
-
"Raw scores:", scores
|
| 419 |
-
) # Show raw scores as fallback
|
| 420 |
-
|
| 421 |
-
else: # If scores dictionary was empty
|
| 422 |
-
st.warning(
|
| 423 |
-
"Received empty scores, cannot plot chart."
|
| 424 |
-
)
|
| 425 |
-
|
| 426 |
-
elif not PLOTLY_AVAILABLE:
|
| 427 |
-
st.warning(
|
| 428 |
-
"Plotly not installed, cannot display pie chart. Showing raw scores instead."
|
| 429 |
-
)
|
| 430 |
-
st.json(
|
| 431 |
-
scores
|
| 432 |
-
) # Display raw scores as JSON if no Plotly
|
| 433 |
-
else:
|
| 434 |
-
# This case should be covered by the check above, but for safety
|
| 435 |
-
st.write("No valid score data available to plot.")
|
| 436 |
-
# --- End Pie Chart ---
|
| 437 |
-
|
| 438 |
-
else:
|
| 439 |
-
# This handles cases where predict_sentiments returned an error label
|
| 440 |
-
st.error(
|
| 441 |
-
f"Sentiment analysis failed for the input text. Result: {result}"
|
| 442 |
-
)
|
| 443 |
-
|
| 444 |
-
else:
|
| 445 |
-
# This handles cases where predict_sentiments returned None or empty list
|
| 446 |
-
st.error(
|
| 447 |
-
"Received no valid result from the prediction function."
|
| 448 |
-
)
|
| 449 |
-
|
| 450 |
-
except Exception as analysis_e:
|
| 451 |
-
# Catch-all for other errors during analysis for this tab
|
| 452 |
-
st.error(
|
| 453 |
-
f"An error occurred during text analysis: {str(analysis_e)}"
|
| 454 |
-
)
|
| 455 |
-
print(f"Full error during text input analysis: {analysis_e}")
|
| 456 |
-
import traceback
|
| 457 |
-
|
| 458 |
-
traceback.print_exc()
|
| 459 |
-
|
| 460 |
-
else:
|
| 461 |
-
# If user clicks button without entering text
|
| 462 |
-
st.warning("Please enter some text in the text area first!")
|
| 463 |
-
|
| 464 |
-
with tab_youtube:
|
| 465 |
-
st.header("YouTube Comment Sentiment Analyzer")
|
| 466 |
-
# Input field for URL or ID
|
| 467 |
-
video_url_input = st.text_input(
|
| 468 |
-
"Enter YouTube Video URL or Video ID:",
|
| 469 |
-
key="youtube_url_input_key", # Giving it a unique key
|
| 470 |
-
placeholder="e.g., Z9kGRMglw-I or full URL",
|
| 471 |
-
)
|
| 472 |
-
|
| 473 |
-
# Button to trigger analysis
|
| 474 |
-
if st.button("Analyze YouTube Comments", key="youtube_analyze_button_key"):
|
| 475 |
-
if video_url_input: # Check if user actually entered something
|
| 476 |
-
# analyze_youtube_video handles spinners internally now
|
| 477 |
-
analysis_results = analyze_youtube_video(video_url_input)
|
| 478 |
-
|
| 479 |
-
if (
|
| 480 |
-
analysis_results and analysis_results["summary"]
|
| 481 |
-
): # Check if we got valid results
|
| 482 |
-
summary = analysis_results["summary"]
|
| 483 |
-
comments_data = analysis_results["comments_data"]
|
| 484 |
-
video_title_display = summary.get(
|
| 485 |
-
"video_title", "Video Title Not Available"
|
| 486 |
-
)
|
| 487 |
-
|
| 488 |
-
st.markdown("---")
|
| 489 |
-
# Displaying the video title using markdown for potential formatting later
|
| 490 |
-
st.markdown(f"### Analyzing Video: **{video_title_display}**")
|
| 491 |
-
st.markdown("---")
|
| 492 |
-
|
| 493 |
-
st.subheader("📊 Sentiment Summary")
|
| 494 |
-
|
| 495 |
-
# Define desired font sizes (you can adjust these)
|
| 496 |
-
# label_font_size = (
|
| 497 |
-
# "24px" # Font size for the label text like "Comments Fetched"
|
| 498 |
-
# )
|
| 499 |
-
label_font_size = "24px"
|
| 500 |
-
value_font_size = "28px" # Font size for the actual count like "137"
|
| 501 |
-
value_font_weight = "bold" # Make the count bold
|
| 502 |
-
|
| 503 |
-
# Define colors for the sentiment counts
|
| 504 |
-
positive_color = "green"
|
| 505 |
-
neutral_color = "grey"
|
| 506 |
-
negative_color = "red"
|
| 507 |
-
|
| 508 |
-
# Using 5 columns
|
| 509 |
-
col_fetched, col_analyzed, col_pos, col_neu, col_neg = st.columns(5)
|
| 510 |
-
|
| 511 |
-
# Metric 1: Comments Fetched
|
| 512 |
-
with col_fetched:
|
| 513 |
-
# Label for fetched comments
|
| 514 |
-
st.markdown(
|
| 515 |
-
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Comments Fetched</p>",
|
| 516 |
-
unsafe_allow_html=True,
|
| 517 |
-
)
|
| 518 |
-
# The number of fetched comments
|
| 519 |
-
st.markdown(
|
| 520 |
-
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; margin-top: 0px;'>{summary.get('num_comments_fetched', 0)}</p>",
|
| 521 |
-
unsafe_allow_html=True,
|
| 522 |
-
)
|
| 523 |
-
|
| 524 |
-
# Metric 2: Comments Analyzed
|
| 525 |
-
with col_analyzed:
|
| 526 |
-
# Label for analyzed comments
|
| 527 |
-
st.markdown(
|
| 528 |
-
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Comments Analyzed</p>",
|
| 529 |
-
unsafe_allow_html=True,
|
| 530 |
-
)
|
| 531 |
-
# The number of analyzed comments
|
| 532 |
-
st.markdown(
|
| 533 |
-
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; margin-top: 0px;'>{summary.get('num_comments_analyzed', 0)}</p>",
|
| 534 |
-
unsafe_allow_html=True,
|
| 535 |
-
)
|
| 536 |
-
|
| 537 |
-
# Metric 3: Positive
|
| 538 |
-
with col_pos:
|
| 539 |
-
# Label for positive comments, with emoji
|
| 540 |
-
st.markdown(
|
| 541 |
-
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Positive 👍</p>",
|
| 542 |
-
unsafe_allow_html=True,
|
| 543 |
-
)
|
| 544 |
-
# The count of positive comments, green and bold
|
| 545 |
-
st.markdown(
|
| 546 |
-
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{positive_color}; margin-top: 0px;'>{summary.get('positive', 0)}</p>",
|
| 547 |
-
unsafe_allow_html=True,
|
| 548 |
-
)
|
| 549 |
-
|
| 550 |
-
# Metric 4: Neutral
|
| 551 |
-
with col_neu:
|
| 552 |
-
# Label for neutral comments
|
| 553 |
-
st.markdown(
|
| 554 |
-
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Neutral 😐</p>",
|
| 555 |
-
unsafe_allow_html=True,
|
| 556 |
-
)
|
| 557 |
-
# The count of neutral comments, grey and bold
|
| 558 |
-
st.markdown(
|
| 559 |
-
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{neutral_color}; margin-top: 0px;'>{summary.get('neutral', 0)}</p>",
|
| 560 |
-
unsafe_allow_html=True,
|
| 561 |
-
)
|
| 562 |
-
|
| 563 |
-
# Metric 5: Negative
|
| 564 |
-
with col_neg:
|
| 565 |
-
# Label for negative comments
|
| 566 |
-
st.markdown(
|
| 567 |
-
f"<p style='font-size: {label_font_size}; margin-bottom: 0px;'>Negative 👎</p>",
|
| 568 |
-
unsafe_allow_html=True,
|
| 569 |
-
)
|
| 570 |
-
# The count of negative comments, red and bold
|
| 571 |
-
st.markdown(
|
| 572 |
-
f"<p style='font-size: {value_font_size}; font-weight: {value_font_weight}; color:{negative_color}; margin-top: 0px;'>{summary.get('negative', 0)}</p>",
|
| 573 |
-
unsafe_allow_html=True,
|
| 574 |
-
)
|
| 575 |
-
|
| 576 |
-
# Add a visual separator before charts
|
| 577 |
-
st.markdown("---")
|
| 578 |
-
|
| 579 |
-
# Data for charts - make sure it has counts > 0
|
| 580 |
-
if summary.get("num_valid_predictions", 0) > 0:
|
| 581 |
-
# Prepare DataFrame for Plotly charts
|
| 582 |
-
sentiment_data_for_plot = [
|
| 583 |
-
{"Sentiment": "Positive", "Count": summary.get("positive", 0)},
|
| 584 |
-
{"Sentiment": "Neutral", "Count": summary.get("neutral", 0)},
|
| 585 |
-
{"Sentiment": "Negative", "Count": summary.get("negative", 0)},
|
| 586 |
-
]
|
| 587 |
-
sentiment_counts_df = pd.DataFrame(sentiment_data_for_plot)
|
| 588 |
-
# Filter out rows where Count is 0 for cleaner charts
|
| 589 |
-
sentiment_counts_df_for_plot = sentiment_counts_df[
|
| 590 |
-
sentiment_counts_df["Count"] > 0
|
| 591 |
-
].copy()
|
| 592 |
-
|
| 593 |
-
# Define the color map for charts
|
| 594 |
-
# Keys should match the 'Sentiment' column values
|
| 595 |
-
color_map = {
|
| 596 |
-
"Positive": "green",
|
| 597 |
-
"Neutral": "grey",
|
| 598 |
-
"Negative": "red",
|
| 599 |
-
}
|
| 600 |
-
|
| 601 |
-
if not sentiment_counts_df_for_plot.empty:
|
| 602 |
-
st.subheader("📈 Sentiment Distribution Charts")
|
| 603 |
-
# Try to use Plotly for richer charts
|
| 604 |
-
if PLOTLY_AVAILABLE:
|
| 605 |
-
try:
|
| 606 |
-
# Pie Chart (Corrected data input for Plotly)
|
| 607 |
-
# Plotly pie chart expects a DataFrame where one column is values, another is names
|
| 608 |
-
fig_pie = px.pie(
|
| 609 |
-
sentiment_counts_df_for_plot, # Use the filtered DataFrame
|
| 610 |
-
values="Count", # Column for pie slice values
|
| 611 |
-
names="Sentiment", # Column for pie slice names
|
| 612 |
-
title="Pie Chart: Comment Sentiments",
|
| 613 |
-
color="Sentiment", # Color slices based on the 'Sentiment' category
|
| 614 |
-
color_discrete_map=color_map,
|
| 615 |
-
) # Apply custom colors
|
| 616 |
-
|
| 617 |
-
fig_pie.update_traces(
|
| 618 |
-
textposition="inside",
|
| 619 |
-
textinfo="percent+label",
|
| 620 |
-
hovertemplate="Sentiment: %{label}<br>Count: %{value}<br>Percentage: %{percent}",
|
| 621 |
-
)
|
| 622 |
-
|
| 623 |
-
fig_pie.update_layout(
|
| 624 |
-
uniformtext_minsize=16, uniformtext_mode="hide"
|
| 625 |
-
)
|
| 626 |
-
|
| 627 |
-
st.plotly_chart(fig_pie, use_container_width=True)
|
| 628 |
-
|
| 629 |
-
# Bar Chart (Using Plotly for consistent coloring)
|
| 630 |
-
fig_bar = px.bar(
|
| 631 |
-
sentiment_counts_df_for_plot, # Use the filtered DataFrame
|
| 632 |
-
x="Sentiment", # Categories on X-axis
|
| 633 |
-
y="Count", # Values on Y-axis
|
| 634 |
-
title="Bar Chart: Comment Sentiments",
|
| 635 |
-
color="Sentiment", # Color bars based on 'Sentiment'
|
| 636 |
-
color_discrete_map=color_map, # Apply custom colors
|
| 637 |
-
labels={
|
| 638 |
-
"Count": "Number of Comments",
|
| 639 |
-
"Sentiment": "Sentiment Category",
|
| 640 |
-
},
|
| 641 |
-
) # Custom labels
|
| 642 |
-
st.plotly_chart(fig_bar, use_container_width=True)
|
| 643 |
-
|
| 644 |
-
except Exception as plot_e:
|
| 645 |
-
# Fallback if Plotly fails for some reason other than import
|
| 646 |
-
st.error(
|
| 647 |
-
f"Sorry, couldn't create Plotly charts: {plot_e}"
|
| 648 |
-
)
|
| 649 |
-
st.write(
|
| 650 |
-
"Displaying basic bar chart instead (default colors):"
|
| 651 |
-
)
|
| 652 |
-
st.bar_chart(
|
| 653 |
-
sentiment_counts_df.set_index("Sentiment")
|
| 654 |
-
) # Fallback with original (unfiltered for bar)
|
| 655 |
-
else:
|
| 656 |
-
# Fallback to Streamlit's basic bar chart if Plotly is not installed
|
| 657 |
-
st.write(
|
| 658 |
-
"Displaying basic bar chart (Plotly not installed):"
|
| 659 |
-
)
|
| 660 |
-
st.bar_chart(
|
| 661 |
-
sentiment_counts_df.set_index("Sentiment")
|
| 662 |
-
) # Basic bar chart
|
| 663 |
-
else:
|
| 664 |
-
# This message shows if all sentiment counts are zero
|
| 665 |
-
st.write(
|
| 666 |
-
"No sentiment data (Positive, Neutral, Negative all zero) to display in charts."
|
| 667 |
-
)
|
| 668 |
-
else:
|
| 669 |
-
# This message shows if no comments were analyzed successfully
|
| 670 |
-
st.write(
|
| 671 |
-
"Not enough valid sentiment data to display distribution charts."
|
| 672 |
-
)
|
| 673 |
-
|
| 674 |
-
# Display comments and their sentiments
|
| 675 |
-
if comments_data:
|
| 676 |
-
st.subheader(
|
| 677 |
-
f"🔍 Analyzed Comments (showing first {len(comments_data)} results)"
|
| 678 |
-
)
|
| 679 |
-
comments_display_df = pd.DataFrame(comments_data)
|
| 680 |
-
|
| 681 |
-
if "Confidence" in comments_display_df.columns:
|
| 682 |
-
try:
|
| 683 |
-
# Format as percentage with 1 decimal place
|
| 684 |
-
comments_display_df["Confidence"] = comments_display_df[
|
| 685 |
-
"Confidence"
|
| 686 |
-
].map("{:.1%}".format)
|
| 687 |
-
except (TypeError, ValueError):
|
| 688 |
-
st.warning(
|
| 689 |
-
"Could not format confidence scores."
|
| 690 |
-
) # Handle potential errors if confidence is not numeric
|
| 691 |
-
|
| 692 |
-
st.dataframe(
|
| 693 |
-
comments_display_df, use_container_width=True, height=400
|
| 694 |
-
)
|
| 695 |
-
else:
|
| 696 |
-
st.write("No comments were analyzed to display.")
|
| 697 |
-
# else: # analyze_youtube_video already handles its own errors by showing st.error
|
| 698 |
-
# st.info("Could not complete analysis. Please check the URL or try again.")
|
| 699 |
-
else:
|
| 700 |
-
# If user clicks button without entering URL
|
| 701 |
-
st.warning("Please enter a YouTube URL or Video ID first!")
|
| 702 |
-
|
| 703 |
-
with tab_twitter:
|
| 704 |
-
st.header("Twitter/X Post Analysis")
|
| 705 |
-
st.info("This feature is currently under construction. Please check back later!")
|
| 706 |
-
# Placeholder for future Twitter input
|
| 707 |
-
# twitter_url_input = st.text_input("Enter Twitter/X Post URL:", key="twitter_url_input_key")
|
| 708 |
-
# if st.button("Analyze Tweets", key="twitter_analyze_button_key"):
|
| 709 |
-
# st.write("Imagine amazing Twitter analysis happening here... Tweet tweet!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|