AlainDeLong's picture
first commit
3c8c0e4
import os
import sys
import numpy as np
import pandas as pd
import dill
from src.logger import logging
from src.exception import CustomException
from sklearn.metrics import r2_score
from sklearn.model_selection import GridSearchCV
def save_object(file_path, obj):
try:
dir_path = os.path.dirname(file_path)
os.makedirs(dir_path, exist_ok=True)
with open(file_path, "wb") as file_obj:
dill.dump(obj, file_obj)
except Exception as e:
raise CustomException(e, sys)
def evaluate_models(X_train, y_train, X_test, y_test, models, params_grid):
try:
report = {}
for i in range(len(list(models))):
model = list(models.values())[i]
param = params_grid[list(models.keys())[i]]
# model.fit(X_train, y_train) # Train model
grid_search = GridSearchCV(model, param, cv=3, n_jobs=-1)
grid_search.fit(X_train, y_train)
model.set_params(**grid_search.best_params_)
model.fit(X_train, y_train)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
train_model_score = r2_score(y_train, y_train_pred)
test_model_score = r2_score(y_test, y_test_pred)
report[list(models.keys())[i]] = test_model_score
return report
except Exception as e:
raise CustomException(e, sys)
def load_object(file_path):
try:
with open(file_path, "rb") as file_obj:
return dill.load(file_obj)
except Exception as e:
raise CustomException(e, sys)