Spaces:
Build error
Build error
import os | |
import sys | |
from dataclasses import dataclass | |
from sklearn.metrics import r2_score | |
from sklearn.linear_model import LinearRegression | |
from sklearn.neighbors import KNeighborsRegressor | |
from sklearn.tree import DecisionTreeRegressor | |
from sklearn.ensemble import ( | |
RandomForestRegressor, | |
AdaBoostRegressor, | |
GradientBoostingRegressor, | |
) | |
from xgboost import XGBRegressor | |
from catboost import CatBoostRegressor | |
from src.logger import logging | |
from src.exception import CustomException | |
from src.utils import save_object, evaluate_models | |
class ModelTrainerConfig: | |
trained_model_file_path = os.path.join("artifacts", "model.pkl") | |
class ModelTrainer: | |
def __init__(self) -> None: | |
self.model_trainer_config = ModelTrainerConfig() | |
def initiate_model_trainer(self, train_array, test_array): | |
try: | |
logging.info("Split training and testing input data") | |
X_train, y_train, X_test, y_test = ( | |
train_array[:, :-1], | |
train_array[:, -1], | |
test_array[:, :-1], | |
test_array[:, -1], | |
) | |
models = { | |
"Linear Regression": LinearRegression(), | |
"K-Neighbors Regressor": KNeighborsRegressor(), | |
"Decision Tree Regressor": DecisionTreeRegressor(), | |
"Random Forest Regressor": RandomForestRegressor(), | |
"AdaBoost Regressor": AdaBoostRegressor(), | |
"Gradient Boosting Regressor": GradientBoostingRegressor(), | |
"XGBRegressor": XGBRegressor(), | |
"CatBoosting Regressor": CatBoostRegressor(verbose=False), | |
} | |
params_grid = { | |
"Linear Regression": {}, | |
"K-Neighbors Regressor": {}, | |
"Decision Tree Regressor": { | |
"criterion": [ | |
"squared_error", | |
"friedman_mse", | |
"absolute_error", | |
"poisson", | |
], | |
# 'splitter':['best','random'], | |
# 'max_features':['sqrt','log2'], | |
}, | |
"Random Forest Regressor": { | |
# 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], | |
# 'max_features':['sqrt','log2',None], | |
"n_estimators": [8, 16, 32, 64, 128, 256] | |
}, | |
"AdaBoost Regressor": { | |
"learning_rate": [0.1, 0.01, 0.5, 0.001], | |
# 'loss':['linear','square','exponential'], | |
"n_estimators": [8, 16, 32, 64, 128, 256], | |
}, | |
"Gradient Boosting Regressor": { | |
# 'loss':['squared_error', 'huber', 'absolute_error', 'quantile'], | |
"learning_rate": [0.1, 0.01, 0.05, 0.001], | |
"subsample": [0.6, 0.7, 0.75, 0.8, 0.85, 0.9], | |
# 'criterion':['squared_error', 'friedman_mse'], | |
# 'max_features':['auto','sqrt','log2'], | |
"n_estimators": [8, 16, 32, 64, 128, 256], | |
}, | |
"XGBRegressor": { | |
"learning_rate": [0.1, 0.01, 0.05, 0.001], | |
"n_estimators": [8, 16, 32, 64, 128, 256], | |
}, | |
"CatBoosting Regressor": { | |
"depth": [6, 8, 10], | |
"learning_rate": [0.01, 0.05, 0.1], | |
"iterations": [30, 50, 100], | |
}, | |
} | |
model_report: dict = evaluate_models( | |
X_train=X_train, | |
y_train=y_train, | |
X_test=X_test, | |
y_test=y_test, | |
models=models, | |
params_grid=params_grid, | |
) | |
# To get best model score from dict | |
best_model_score = max(sorted(model_report.values())) | |
# To get best model name from dict | |
best_model_name = list(model_report.keys())[ | |
list(model_report.values()).index(best_model_score) | |
] | |
best_model = models[best_model_name] | |
if best_model_score < 0.6: | |
raise CustomException("No best model found", sys) | |
logging.info(f"Best found model on both training and testing dataset") | |
save_object( | |
file_path=self.model_trainer_config.trained_model_file_path, | |
obj=best_model, | |
) | |
print(best_model_name) | |
predicted = best_model.predict(X_test) | |
r2_square = r2_score(y_test, predicted) | |
return r2_square | |
except Exception as e: | |
raise CustomException(e, sys) | |