File size: 4,780 Bytes
3c8c0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import sys
from dataclasses import dataclass

from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import (
    RandomForestRegressor,
    AdaBoostRegressor,
    GradientBoostingRegressor,
)
from xgboost import XGBRegressor
from catboost import CatBoostRegressor

from src.logger import logging
from src.exception import CustomException
from src.utils import save_object, evaluate_models


@dataclass
class ModelTrainerConfig:
    trained_model_file_path = os.path.join("artifacts", "model.pkl")


class ModelTrainer:
    def __init__(self) -> None:
        self.model_trainer_config = ModelTrainerConfig()

    def initiate_model_trainer(self, train_array, test_array):
        try:
            logging.info("Split training and testing input data")
            X_train, y_train, X_test, y_test = (
                train_array[:, :-1],
                train_array[:, -1],
                test_array[:, :-1],
                test_array[:, -1],
            )

            models = {
                "Linear Regression": LinearRegression(),
                "K-Neighbors Regressor": KNeighborsRegressor(),
                "Decision Tree Regressor": DecisionTreeRegressor(),
                "Random Forest Regressor": RandomForestRegressor(),
                "AdaBoost Regressor": AdaBoostRegressor(),
                "Gradient Boosting Regressor": GradientBoostingRegressor(),
                "XGBRegressor": XGBRegressor(),
                "CatBoosting Regressor": CatBoostRegressor(verbose=False),
            }

            params_grid = {
                "Linear Regression": {},
                "K-Neighbors Regressor": {},
                "Decision Tree Regressor": {
                    "criterion": [
                        "squared_error",
                        "friedman_mse",
                        "absolute_error",
                        "poisson",
                    ],
                    # 'splitter':['best','random'],
                    # 'max_features':['sqrt','log2'],
                },
                "Random Forest Regressor": {
                    # 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
                    # 'max_features':['sqrt','log2',None],
                    "n_estimators": [8, 16, 32, 64, 128, 256]
                },
                "AdaBoost Regressor": {
                    "learning_rate": [0.1, 0.01, 0.5, 0.001],
                    # 'loss':['linear','square','exponential'],
                    "n_estimators": [8, 16, 32, 64, 128, 256],
                },
                "Gradient Boosting Regressor": {
                    # 'loss':['squared_error', 'huber', 'absolute_error', 'quantile'],
                    "learning_rate": [0.1, 0.01, 0.05, 0.001],
                    "subsample": [0.6, 0.7, 0.75, 0.8, 0.85, 0.9],
                    # 'criterion':['squared_error', 'friedman_mse'],
                    # 'max_features':['auto','sqrt','log2'],
                    "n_estimators": [8, 16, 32, 64, 128, 256],
                },
                "XGBRegressor": {
                    "learning_rate": [0.1, 0.01, 0.05, 0.001],
                    "n_estimators": [8, 16, 32, 64, 128, 256],
                },
                "CatBoosting Regressor": {
                    "depth": [6, 8, 10],
                    "learning_rate": [0.01, 0.05, 0.1],
                    "iterations": [30, 50, 100],
                },
            }

            model_report: dict = evaluate_models(
                X_train=X_train,
                y_train=y_train,
                X_test=X_test,
                y_test=y_test,
                models=models,
                params_grid=params_grid,
            )

            # To get best model score from dict
            best_model_score = max(sorted(model_report.values()))

            # To get best model name from dict
            best_model_name = list(model_report.keys())[
                list(model_report.values()).index(best_model_score)
            ]

            best_model = models[best_model_name]
            if best_model_score < 0.6:
                raise CustomException("No best model found", sys)
            logging.info(f"Best found model on both training and testing dataset")

            save_object(
                file_path=self.model_trainer_config.trained_model_file_path,
                obj=best_model,
            )

            print(best_model_name)
            predicted = best_model.predict(X_test)
            r2_square = r2_score(y_test, predicted)
            return r2_square

        except Exception as e:
            raise CustomException(e, sys)