Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| from PIL import Image | |
| import torch | |
| model_name = "prithivMLmods/open-deepfake-detection" | |
| processor = AutoImageProcessor.from_pretrained(model_name) | |
| model = AutoModelForImageClassification.from_pretrained(model_name) | |
| model.eval() | |
| def predict(img): | |
| inputs = processor(images=img, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| probs = torch.softmax(logits, dim=1).squeeze() | |
| is_ai = bool(torch.argmax(probs).item()) | |
| confidence = float(probs[1].item()) if is_ai else float(probs[0].item()) | |
| message = "AI-generated image detected." if is_ai else "Image appears original/authentic." | |
| return {"is_ai_generated": is_ai, "confidence": confidence, "message": message} | |
| iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="json", allow_flagging="never") | |
| iface.launch() |