Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
import altair as alt
|
6 |
+
import google.generativeai as genai
|
7 |
+
from datetime import datetime
|
8 |
+
import os
|
9 |
+
import re
|
10 |
+
import json
|
11 |
+
|
12 |
+
# App title and configuration
|
13 |
+
st.set_page_config(page_title="Expense Tracker", layout="wide")
|
14 |
+
|
15 |
+
# Initialize session state
|
16 |
+
if 'expenses' not in st.session_state:
|
17 |
+
st.session_state.expenses = []
|
18 |
+
if 'df' not in st.session_state:
|
19 |
+
st.session_state.df = pd.DataFrame(columns=['Date', 'Category', 'Amount', 'Description'])
|
20 |
+
if 'chat_history' not in st.session_state:
|
21 |
+
st.session_state.chat_history = []
|
22 |
+
|
23 |
+
# Load Gemini API key from secrets
|
24 |
+
def configure_genai():
|
25 |
+
# For local development, use st.secrets
|
26 |
+
# For Hugging Face deployment, use environment variables
|
27 |
+
if 'GEMINI_API_KEY' in st.secrets:
|
28 |
+
api_key = st.secrets['GEMINI_API_KEY']
|
29 |
+
else:
|
30 |
+
api_key = os.environ.get('GEMINI_API_KEY')
|
31 |
+
|
32 |
+
if not api_key:
|
33 |
+
st.error("Gemini API key not found. Please add it to the secrets or environment variables.")
|
34 |
+
st.stop()
|
35 |
+
|
36 |
+
genai.configure(api_key=api_key)
|
37 |
+
return genai.GenerativeModel('gemini-2.0-flash')
|
38 |
+
|
39 |
+
model = configure_genai()
|
40 |
+
|
41 |
+
# Function to extract expense data using Gemini
|
42 |
+
def extract_expense_data(text):
|
43 |
+
prompt = f"""
|
44 |
+
Extract expense information from the following text.
|
45 |
+
Return a JSON object with these fields:
|
46 |
+
- date: in YYYY-MM-DD format (use today's date if not specified)
|
47 |
+
- category: the expense category (e.g., food, transport, entertainment)
|
48 |
+
- amount: the numerical amount (just the number, no currency symbol)
|
49 |
+
- description: brief description of the expense
|
50 |
+
|
51 |
+
Example output format:
|
52 |
+
{{
|
53 |
+
"date": "2025-03-19",
|
54 |
+
"category": "food",
|
55 |
+
"amount": 25.50,
|
56 |
+
"description": "lunch at cafe"
|
57 |
+
}}
|
58 |
+
|
59 |
+
If multiple expenses are mentioned, return an array of such objects.
|
60 |
+
|
61 |
+
Text: {text}
|
62 |
+
"""
|
63 |
+
|
64 |
+
try:
|
65 |
+
response = model.generate_content(prompt)
|
66 |
+
response_text = response.text
|
67 |
+
|
68 |
+
# Extract JSON from the response
|
69 |
+
json_match = re.search(r'```json\n(.*?)```', response_text, re.DOTALL)
|
70 |
+
if json_match:
|
71 |
+
json_str = json_match.group(1)
|
72 |
+
else:
|
73 |
+
# If no code block, try to find JSON directly
|
74 |
+
json_str = response_text
|
75 |
+
|
76 |
+
# Parse the JSON
|
77 |
+
data = json.loads(json_str)
|
78 |
+
return data
|
79 |
+
except Exception as e:
|
80 |
+
st.error(f"Error extracting expense data: {e}")
|
81 |
+
return None
|
82 |
+
|
83 |
+
# Function to add expenses to the dataframe
|
84 |
+
def add_expense_to_df(expense_data):
|
85 |
+
if isinstance(expense_data, list):
|
86 |
+
# Handle multiple expenses
|
87 |
+
for expense in expense_data:
|
88 |
+
add_single_expense(expense)
|
89 |
+
else:
|
90 |
+
# Handle single expense
|
91 |
+
add_single_expense(expense_data)
|
92 |
+
|
93 |
+
# Sort by date
|
94 |
+
st.session_state.df = st.session_state.df.sort_values(by='Date', ascending=False)
|
95 |
+
|
96 |
+
def add_single_expense(expense):
|
97 |
+
# Convert amount to float
|
98 |
+
try:
|
99 |
+
amount = float(expense['amount'])
|
100 |
+
except:
|
101 |
+
amount = 0.0
|
102 |
+
|
103 |
+
# Create a new row
|
104 |
+
new_row = pd.DataFrame({
|
105 |
+
'Date': [expense.get('date', datetime.now().strftime('%Y-%m-%d'))],
|
106 |
+
'Category': [expense.get('category', 'Other')],
|
107 |
+
'Amount': [amount],
|
108 |
+
'Description': [expense.get('description', '')]
|
109 |
+
})
|
110 |
+
|
111 |
+
# Append to the dataframe
|
112 |
+
st.session_state.df = pd.concat([st.session_state.df, new_row], ignore_index=True)
|
113 |
+
|
114 |
+
# Function to get AI insights about expenses
|
115 |
+
def get_expense_insights(query):
|
116 |
+
if st.session_state.df.empty:
|
117 |
+
return "No expense data available yet. Please add some expenses first."
|
118 |
+
|
119 |
+
# Convert dataframe to string representation
|
120 |
+
df_str = st.session_state.df.to_string()
|
121 |
+
|
122 |
+
prompt = f"""
|
123 |
+
Here is a dataset of expenses:
|
124 |
+
{df_str}
|
125 |
+
|
126 |
+
User query: {query}
|
127 |
+
|
128 |
+
Please analyze this expense data and answer the query.
|
129 |
+
Provide your analysis in a clear and concise way.
|
130 |
+
If the query is about visualizations, describe what kind of chart would be helpful.
|
131 |
+
"""
|
132 |
+
|
133 |
+
try:
|
134 |
+
response = model.generate_content(prompt)
|
135 |
+
return response.text
|
136 |
+
except Exception as e:
|
137 |
+
return f"Error getting insights: {e}"
|
138 |
+
|
139 |
+
# Function to create visualizations
|
140 |
+
def create_visualizations():
|
141 |
+
if st.session_state.df.empty:
|
142 |
+
st.info("Add some expenses to see visualizations")
|
143 |
+
return
|
144 |
+
|
145 |
+
# Create a copy of the dataframe for visualization
|
146 |
+
df = st.session_state.df.copy()
|
147 |
+
|
148 |
+
# Ensure Date is datetime
|
149 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
150 |
+
|
151 |
+
# Create tabs for different visualizations
|
152 |
+
tab1, tab2, tab3 = st.tabs(["Expenses by Category", "Expenses Over Time", "Recent Expenses"])
|
153 |
+
|
154 |
+
with tab1:
|
155 |
+
st.subheader("Expenses by Category")
|
156 |
+
category_totals = df.groupby('Category')['Amount'].sum().reset_index()
|
157 |
+
|
158 |
+
# Create a pie chart
|
159 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
160 |
+
ax.pie(category_totals['Amount'], labels=category_totals['Category'], autopct='%1.1f%%')
|
161 |
+
ax.set_title('Expenses by Category')
|
162 |
+
st.pyplot(fig)
|
163 |
+
|
164 |
+
# Create a bar chart
|
165 |
+
category_chart = alt.Chart(category_totals).mark_bar().encode(
|
166 |
+
x=alt.X('Category:N', sort='-y'),
|
167 |
+
y=alt.Y('Amount:Q'),
|
168 |
+
color='Category:N'
|
169 |
+
).properties(
|
170 |
+
title='Total Expenses by Category'
|
171 |
+
)
|
172 |
+
st.altair_chart(category_chart, use_container_width=True)
|
173 |
+
|
174 |
+
with tab2:
|
175 |
+
st.subheader("Expenses Over Time")
|
176 |
+
# Group by date and sum amounts
|
177 |
+
daily_totals = df.groupby(df['Date'].dt.date)['Amount'].sum().reset_index()
|
178 |
+
|
179 |
+
# Create a line chart
|
180 |
+
time_chart = alt.Chart(daily_totals).mark_line(point=True).encode(
|
181 |
+
x='Date:T',
|
182 |
+
y='Amount:Q',
|
183 |
+
tooltip=['Date:T', 'Amount:Q']
|
184 |
+
).properties(
|
185 |
+
title='Daily Expenses Over Time'
|
186 |
+
)
|
187 |
+
st.altair_chart(time_chart, use_container_width=True)
|
188 |
+
|
189 |
+
with tab3:
|
190 |
+
st.subheader("Recent Expenses")
|
191 |
+
# Sort by date and get the last 10 expenses
|
192 |
+
recent = df.sort_values('Date', ascending=False).head(10)
|
193 |
+
|
194 |
+
# Create a bar chart
|
195 |
+
recent_chart = alt.Chart(recent).mark_bar().encode(
|
196 |
+
x=alt.X('Description:N', sort='-y'),
|
197 |
+
y='Amount:Q',
|
198 |
+
color='Category:N',
|
199 |
+
tooltip=['Date:T', 'Category:N', 'Amount:Q', 'Description:N']
|
200 |
+
).properties(
|
201 |
+
title='Most Recent Expenses'
|
202 |
+
)
|
203 |
+
st.altair_chart(recent_chart, use_container_width=True)
|
204 |
+
|
205 |
+
# App layout
|
206 |
+
st.title("💰 Expense Tracker with AI")
|
207 |
+
|
208 |
+
# Sidebar for app navigation
|
209 |
+
page = st.sidebar.radio("Navigation", ["Add Expenses", "View & Analyze", "Chat with your Data"])
|
210 |
+
|
211 |
+
if page == "Add Expenses":
|
212 |
+
st.header("Add Your Expenses")
|
213 |
+
st.write("Describe your expenses in natural language, and AI will extract the details.")
|
214 |
+
|
215 |
+
with st.form("expense_form"):
|
216 |
+
user_input = st.text_area(
|
217 |
+
"Enter your expenses:",
|
218 |
+
height=100,
|
219 |
+
placeholder="Example: I spent $25 on lunch today, $15 on transport yesterday, and $50 on groceries on March 15th"
|
220 |
+
)
|
221 |
+
submit_button = st.form_submit_button("Add Expenses")
|
222 |
+
|
223 |
+
if submit_button and user_input:
|
224 |
+
with st.spinner("Processing your expenses..."):
|
225 |
+
expense_data = extract_expense_data(user_input)
|
226 |
+
|
227 |
+
if expense_data:
|
228 |
+
add_expense_to_df(expense_data)
|
229 |
+
st.success("Expenses added successfully!")
|
230 |
+
st.write("Extracted information:")
|
231 |
+
st.json(expense_data)
|
232 |
+
else:
|
233 |
+
st.error("Failed to extract expense data. Please try again with a clearer description.")
|
234 |
+
|
235 |
+
# Show the current expenses
|
236 |
+
if not st.session_state.df.empty:
|
237 |
+
st.subheader("Your Recent Expenses")
|
238 |
+
st.dataframe(st.session_state.df.sort_values(by='Date', ascending=False), use_container_width=True)
|
239 |
+
|
240 |
+
elif page == "View & Analyze":
|
241 |
+
st.header("Your Expense Data")
|
242 |
+
|
243 |
+
# Show the current expenses as a table
|
244 |
+
if not st.session_state.df.empty:
|
245 |
+
st.dataframe(st.session_state.df.sort_values(by='Date', ascending=False), use_container_width=True)
|
246 |
+
|
247 |
+
# Add download button
|
248 |
+
csv = st.session_state.df.to_csv(index=False)
|
249 |
+
st.download_button(
|
250 |
+
label="Download CSV",
|
251 |
+
data=csv,
|
252 |
+
file_name="expenses.csv",
|
253 |
+
mime="text/csv"
|
254 |
+
)
|
255 |
+
|
256 |
+
# Show summary statistics
|
257 |
+
st.subheader("Summary Statistics")
|
258 |
+
col1, col2, col3 = st.columns(3)
|
259 |
+
with col1:
|
260 |
+
st.metric("Total Expenses", f"${st.session_state.df['Amount'].sum():.2f}")
|
261 |
+
with col2:
|
262 |
+
st.metric("Average Expense", f"${st.session_state.df['Amount'].mean():.2f}")
|
263 |
+
with col3:
|
264 |
+
st.metric("Number of Expenses", f"{len(st.session_state.df)}")
|
265 |
+
|
266 |
+
# Create visualizations
|
267 |
+
st.subheader("Visualizations")
|
268 |
+
create_visualizations()
|
269 |
+
else:
|
270 |
+
st.info("No expense data available yet. Please add some expenses first.")
|
271 |
+
|
272 |
+
elif page == "Chat with your Data":
|
273 |
+
st.header("Chat with Your Expense Data")
|
274 |
+
|
275 |
+
if st.session_state.df.empty:
|
276 |
+
st.info("No expense data available yet. Please add some expenses first.")
|
277 |
+
else:
|
278 |
+
st.write("Ask questions about your expenses to get insights.")
|
279 |
+
|
280 |
+
# Display chat history
|
281 |
+
for message in st.session_state.chat_history:
|
282 |
+
with st.chat_message(message["role"]):
|
283 |
+
st.write(message["content"])
|
284 |
+
|
285 |
+
# Get user input
|
286 |
+
user_query = st.chat_input("Ask about your expenses...")
|
287 |
+
|
288 |
+
if user_query:
|
289 |
+
# Add user message to chat history
|
290 |
+
st.session_state.chat_history.append({"role": "user", "content": user_query})
|
291 |
+
|
292 |
+
# Display user message
|
293 |
+
with st.chat_message("user"):
|
294 |
+
st.write(user_query)
|
295 |
+
|
296 |
+
# Get AI response
|
297 |
+
with st.spinner("Thinking..."):
|
298 |
+
response = get_expense_insights(user_query)
|
299 |
+
|
300 |
+
# Add AI response to chat history
|
301 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
302 |
+
|
303 |
+
# Display AI response
|
304 |
+
with st.chat_message("assistant"):
|
305 |
+
st.write(response)
|
306 |
+
|
307 |
+
# Add instructions for Hugging Face deployment in the sidebar
|
308 |
+
with st.sidebar.expander("Deployment Instructions"):
|
309 |
+
st.write("""
|
310 |
+
### How to deploy to Hugging Face:
|
311 |
+
|
312 |
+
1. Save this code as `app.py`
|
313 |
+
2. Create a `requirements.txt` file with these dependencies:
|
314 |
+
```
|
315 |
+
streamlit
|
316 |
+
pandas
|
317 |
+
matplotlib
|
318 |
+
seaborn
|
319 |
+
altair
|
320 |
+
google-generativeai
|
321 |
+
```
|
322 |
+
3. Create a `README.md` file describing your app
|
323 |
+
4. Add your Gemini API key to your Hugging Face Space secrets with the name `GEMINI_API_KEY`
|
324 |
+
5. Push your code to a GitHub repository
|
325 |
+
6. Create a new Hugging Face Space, select Streamlit as the SDK, and connect your GitHub repository
|
326 |
+
""")
|
327 |
+
|
328 |
+
# Bottom credits
|
329 |
+
st.sidebar.markdown("---")
|
330 |
+
st.sidebar.caption("Built with Streamlit and Gemini AI")
|