import streamlit as st
from crewai import Agent, Crew, Task, Process
from typing import List
import os
from dotenv import load_dotenv
from crewai_tools import SerperDevTool
import json
from pydantic import BaseModel, Field
from typing import List, Optional, Dict
from enum import Enum
from langchain.llms import GoogleGenerativeAI
# Page configuration
st.set_page_config(
page_title="Learning Path Generator",
page_icon="🎓",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
""", unsafe_allow_html=True)
# Load environment variables
load_dotenv()
class ExpertiseLevel(str, Enum):
BEGINNER = "beginner"
INTERMEDIATE = "intermediate"
ADVANCED = "advanced"
# Model definitions
class LearningMaterial(BaseModel):
title: str
url: str
type: str = Field(..., description="video, article, or exercise")
description: str
class MaterialCollection(BaseModel):
materials: List[LearningMaterial]
class QuizQuestion(BaseModel):
question: str
options: List[str]
correct_answer: int
explanation: str
class Quiz(BaseModel):
questions: List[QuizQuestion]
class ProjectIdea(BaseModel):
title: str
description: str
difficulty: ExpertiseLevel
estimated_duration: str = Field(..., description="Duration estimation in days")
required_skills: List[str]
learning_outcomes: List[str]
class Projects(BaseModel):
projects: List[ProjectIdea]
# Initialize LLM and search tool
def initialize_services():
# Get API keys
google_api_key = os.getenv("GOOGLE_API_KEY")
serper_api_key = os.getenv("SERPER_API_KEY")
if not google_api_key:
st.error("Google API Key not found in environment variables. Please set the GOOGLE_API_KEY.")
st.stop()
if not serper_api_key:
st.warning("Serper API Key not found. Search functionality may be limited.")
try:
# Initialize Gemini model
from langchain_google_genai import ChatGoogleGenerativeAI
gemini_llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash-lite",
google_api_key=google_api_key,
temperature=0.7,
convert_system_message_to_human=True
)
# Test the model connection
_ = gemini_llm.invoke("Test connection")
# Initialize search tool if API key is available
search_tool = None
if serper_api_key:
search_tool = SerperDevTool(serper_api_key=serper_api_key)
return gemini_llm, search_tool
except ImportError:
st.error("Required packages not installed. Please install langchain-google-genai.")
st.stop()
except Exception as e:
st.error(f"Error initializing Gemini model: {str(e)}")
# Fallback to a default model from CrewAI
from crewai import LLM
default_llm = LLM(name="openai", model="gpt-3.5-turbo")
st.warning("Falling back to default model (OpenAI GPT-3.5).")
return default_llm, None
def create_agents_and_tasks(topics, expertise_level, llm):
# Create agents
learning_material_agent = Agent(
role='Learning Material Curator',
goal='Curate high-quality learning materials based on user topics and expertise level',
backstory="""You are an expert educational content curator with years of experience
in finding the best learning resources for students at different levels. You know how
to identify reliable and high-quality educational content from reputable sources.""",
llm=llm,
verbose=True
)
quiz_creator_agent = Agent(
role='Quiz Creator',
goal='Create engaging and educational quizzes to test understanding',
backstory="""You are an experienced educator who specializes in creating
effective assessment questions that test understanding while promoting learning.""",
llm=llm,
verbose=True
)
project_suggestion_agent = Agent(
role='Project Advisor',
goal='Suggest practical projects that match user expertise and interests',
backstory="""You are a project-based learning expert who knows how to create
engaging hands-on projects that reinforce learning objectives.""",
llm=llm,
verbose=True
)
# Create tasks
create_learning_material_task = Task(
description=f"""{topics}.
Explain {topics} to a {expertise_level} level.
Include a mix of videos, articles, and practical exercises.
Ensure all materials are from reputable sources and are current.
Include GitHub repos for practical exercises. Verify source credibility before including.
Format response as: {{
"materials": [
{{
"title": "...",
"url": "...",
"type": "...",
"description": "..."
}}
]
}}""",
agent=learning_material_agent,
expected_output=MaterialCollection.schema_json()
)
create_quiz_task = Task(
description=f"Create a comprehensive quiz for {topics} at {expertise_level} level.",
agent=quiz_creator_agent,
expected_output=Quiz.schema_json(),
output_pydantic=Quiz
)
create_project_suggestion_task = Task(
description=f"""Suggest ONLY 5 BEST practical project ideas for {topics}.
Projects should be suitable for {expertise_level} level.
Include title, description, difficulty, estimated duration, required skills, and learning outcomes.
Suggest projects that have recent community activity (check GitHub).
Include links to relevant documentation.
Projects should be engaging and reinforce key concepts.""",
agent=project_suggestion_agent,
expected_output=Projects.schema_json(),
output_pydantic=Projects
)
return (
[learning_material_agent, quiz_creator_agent, project_suggestion_agent],
[create_learning_material_task, create_quiz_task, create_project_suggestion_task]
)
def display_learning_materials(materials):
st.markdown("
", unsafe_allow_html=True)
try:
# Parse the raw JSON string into a Python dictionary
materials_json = json.loads(materials)
# Group materials by type
videos = []
articles = []
exercises = []
if 'materials' in materials_json:
for material in materials_json['materials']:
if material['type'].lower() == 'video':
videos.append(material)
elif material['type'].lower() == 'article':
articles.append(material)
elif material['type'].lower() == 'exercise':
exercises.append(material)
# Display materials by type
if videos:
st.markdown("### 🎥 Videos")
for material in videos:
st.markdown(f"""
Video {material['title']}
{material['description']}
Watch Video →
""", unsafe_allow_html=True)
if articles:
st.markdown("### 📄 Articles")
for material in articles:
st.markdown(f"""
Article {material['title']}
{material['description']}
Read Article →
""", unsafe_allow_html=True)
if exercises:
st.markdown("### 💻 Exercises")
for material in exercises:
st.markdown(f"""
""", unsafe_allow_html=True)
except json.JSONDecodeError as e:
st.error(f"Error parsing learning materials: {e}")
st.write(materials) # Fallback to display raw output
def display_quiz(quiz):
st.markdown("", unsafe_allow_html=True)
try:
quiz_json = json.loads(quiz)
if 'questions' in quiz_json:
for i, question in enumerate(quiz_json['questions'], 1):
st.markdown(f"""
Question {i}
{question['question']}
""", unsafe_allow_html=True)
# Display options
for j, option in enumerate(question['options'], 1):
correct_index = question['correct_answer']
# Check if this is the correct answer (add 1 since our display is 1-indexed)
is_correct = (j == correct_index + 1)
# Create option class based on correctness
option_class = "quiz-option quiz-option-correct" if is_correct else "quiz-option"
st.markdown(f"""
{j}. {option} {' ✓' if is_correct else ''}
""", unsafe_allow_html=True)
# Show explanation in an expander
with st.expander("See Explanation"):
st.write(question['explanation'])
except json.JSONDecodeError as e:
st.error(f"Error parsing quiz: {e}")
st.write(quiz) # Fallback to display raw output
def display_projects(projects):
st.markdown("", unsafe_allow_html=True)
if projects and hasattr(projects, 'projects'):
for i, project in enumerate(projects.projects, 1):
# Set badge class based on difficulty
badge_class = ""
if project.difficulty == "beginner":
badge_class = "badge-beginner"
elif project.difficulty == "intermediate":
badge_class = "badge-intermediate"
elif project.difficulty == "advanced":
badge_class = "badge-advanced"
st.markdown(f"""
""", unsafe_allow_html=True)
# Skills and outcomes in expandable sections
col1, col2 = st.columns(2)
with col1:
with st.expander("📋 Required Skills"):
for skill in project.required_skills:
st.markdown(f"• {skill}")
with col2:
with st.expander("🎯 Learning Outcomes"):
for outcome in project.learning_outcomes:
st.markdown(f"• {outcome}")
def render_welcome_screen():
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
st.markdown("""
🎓 Learning Path Generator
Generate personalized learning paths, quizzes, and project ideas with AI assistance.
Powered by Gemini 2.0
""", unsafe_allow_html=True)
st.markdown("""
How It Works:
- Enter your learning topics in the sidebar
- Select your expertise level
- Click "Generate Learning Path" to create personalized content
""", unsafe_allow_html=True)
# Feature highlights
st.markdown("""
📚 Curated Resources
Get hand-picked learning materials tailored to your level
🧠 Interactive Quizzes
Test your knowledge with custom quizzes
🚀 Project Ideas
Apply your skills with hands-on projects
""", unsafe_allow_html=True)
def main():
# Initialize session state
if 'generation_complete' not in st.session_state:
st.session_state.generation_complete = False
if 'results' not in st.session_state:
st.session_state.results = None
# Header
st.markdown("🎓 Learning Path Generator
", unsafe_allow_html=True)
# Sidebar for inputs with enhanced styling
with st.sidebar:
st.image("https://www.svgrepo.com/show/374122/learning.svg", width=80)
st.markdown("Configure Your Learning Path
", unsafe_allow_html=True)
# Gemini badge
st.markdown("Powered by Gemini 2.0
", unsafe_allow_html=True)
st.markdown("### Topics")
topics = st.text_area(
"Enter topics to learn (one per line)",
placeholder="Example:\nPython Data Science\nMachine Learning\nDeep Learning",
help="Enter the topics you want to learn about",
height=150
)
st.markdown("### Your Level")
expertise_level = st.selectbox(
"Select your expertise level",
options=[level.value for level in ExpertiseLevel],
format_func=lambda x: x.capitalize(),
help="Choose your current level of expertise"
)
# Add model selection dropdown
model_options = [
"gemini-2.0-flash-lite",
"gemini-2.0-pro",
"gpt-3.5-turbo" # Fallback option
]
selected_model = st.selectbox(
"AI Model",
options=model_options,
index=0,
help="Select the AI model to use"
)
# Store the selected model in session state
if 'selected_model' not in st.session_state:
st.session_state.selected_model = selected_model
elif st.session_state.selected_model != selected_model:
st.session_state.selected_model = selected_model
generate_btn = st.button("🚀 Generate Learning Path", use_container_width=True, type="primary")
st.markdown("---")
st.markdown("""
Powered by CrewAI and Google Gemini
© 2025 Learning Path Generator
""", unsafe_allow_html=True)
# Check for API keys
if not os.getenv("GOOGLE_API_KEY") and st.session_state.selected_model.startswith("gemini"):
st.warning("⚠️ Google API Key not found. Please add it to your environment variables.", icon="⚠️")
# Main content area
if not st.session_state.generation_complete and not generate_btn:
render_welcome_screen()
if generate_btn:
if not topics:
st.error("⚠️ Please enter at least one topic")
return
topic_list = [topic.strip() for topic in topics.split('\n') if topic.strip()]
# Show a more visually appealing loading state
st.markdown("""
Generating Your Personalized Learning Path...
Our AI experts are crafting the perfect resources for you.
This may take a minute or two.
""", unsafe_allow_html=True)
try:
# Try-except for better error handling
try:
# Initialize Gemini LLM and tools
llm, search_tool = initialize_services()
# Create agents and tasks with Gemini
agents, tasks = create_agents_and_tasks(topics, expertise_level, llm)
# Create and run crew
crew = Crew(
agents=agents,
tasks=tasks,
process=Process.sequential
)
result = crew.kickoff({"topics": topic_list, "expertise_level": ExpertiseLevel(expertise_level)})
# Store results in session state
st.session_state.results = {
"materials": tasks[0].output.raw,
"quiz": tasks[1].output.raw,
"projects": result.pydantic
}
st.session_state.generation_complete = True
# Rerun to display results
st.rerun()
except ImportError as ie:
st.error(f"Missing package: {str(ie)}")
st.info("Try installing required packages with: `pip install langchain-google-genai crewai pydantic`")
except AttributeError as ae:
st.error(f"Configuration issue: {str(ae)}")
st.info("This might be a compatibility issue between CrewAI and the LLM integration.")
except ValueError as ve:
st.error(f"Value error: {str(ve)}")
if "api_key" in str(ve).lower():
st.info("There seems to be an issue with your API key. Please check if it's correctly set in the .env file.")
except Exception as e:
st.error(f"🚨 An error occurred: {str(e)}")
st.info("If the issue persists, try switching to a different AI model in the sidebar.")
# Display results if generation is complete
if st.session_state.generation_complete and st.session_state.results:
results = st.session_state.results
# Create tabs with icons
tab1, tab2, tab3 = st.tabs(["📚 Learning Materials", "🧠 Quiz", "🚀 Project Ideas"])
with tab1:
display_learning_materials(results["materials"])
with tab2:
display_quiz(results["quiz"])
with tab3:
display_projects(results["projects"])
# Add footer
st.markdown("""
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()