File size: 8,513 Bytes
5490341
 
 
 
 
 
 
 
 
 
 
 
 
 
af9aea6
 
 
 
 
 
 
 
5490341
af9aea6
 
 
5490341
af9aea6
 
 
 
5490341
 
 
 
 
 
 
 
 
 
 
 
 
af9aea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5490341
 
 
 
 
 
 
 
 
 
 
 
 
af9aea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5490341
 
 
 
 
 
af9aea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5490341
 
 
 
 
 
af9aea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5490341
 
 
 
 
 
 
 
 
af9aea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5490341
 
 
af9aea6
 
 
 
 
5490341
 
 
 
 
 
af9aea6
5490341
 
af9aea6
 
 
 
 
 
 
 
 
 
 
 
5490341
af9aea6
 
 
 
5490341
af9aea6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright 2025 Akihito Miyazaki. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import gradio as gr
from smolagents import CodeAgent, tool

from linear_api_utils import execute_query
from sleep_per_last_token_model import SleepPerLastTokenModelLiteLLM

# if use .env need these lines HF_TOKEN is optional
"""
LINEAR_API_KEY="lin_api_***"
GROQ_API_KEY = "gsk_***"
HF_TOKEN = "hf_***"
"""


def get_env_value(key, is_value_error_on_null=True):
    """
    Gets an environment variable's value, loading from .env if needed.

    Args:
        key (str): Environment variable name.
        is_value_error_on_null (bool): Raise ValueError if not found (default: True).

    Returns:
        str: Environment variable value.

    Raises:
        ValueError: If `key` is not found and `is_value_error_on_null` is True.
    """
    value = os.getenv(key)
    if value is None:
        from dotenv import load_dotenv

        load_dotenv()
        value = os.getenv(key)
        if is_value_error_on_null and value is None:
            raise ValueError(f"Need {key} on secret or .env(If running on local)")
    return value


# SETTINGS
LINEAR_ISSUE_LABEL = "huggingface-public"  # only show issue with this label,I added for demo you can remove this
## set secret key on Space setting or .env(local)
# hf_token = get_env_value("HF_TOKEN")
groq_api_key = get_env_value("GROQ_API_KEY")
api_key = get_env_value("LINEAR_API_KEY")


if api_key is None:
    raise ValueError("Need LINEAR_API_KEY on secret")
if groq_api_key is None:
    raise ValueError("Need GROQ_API_KEY on secret")


model_id = "groq/llama3-8b-8192"


def add_comment(issue_id, model_name, comment):
    """
    Add comment to an issue.


    Args:
        issue_id (str): Issue ID.
        model_name (str): Model name added as title.
        comment (str): Comment text.


    Returns:
        str: query result json.
    """
    comment = comment.replace('"', '\\"').replace("\n", "\\n")  # escape doublequote
    # header = f"<!---\\n start-ai-comment({model_name}) \\n--->\\n"
    header = f"[ ](start-ai-comment:{model_name})\\n"
    header += f"# {model_name.split('/')[1]}'s comment'\\n"
    comment = header + comment
    comment_create_text = """
    mutation CommentCreate {
  commentCreate(
    input: {
      issueId : "%s"
      body:"%s" 
    }
  ) {
    success
    comment {
      id
      body
    }
  }
}""" % (issue_id, comment)
    result = execute_query("add comment", comment_create_text, api_key)


issue_id = None


def change_state_reviewing():
    """
    Change the state of an issue to "Reviewing".

    Returns:
        None
    """
    get_state_query_text = """
    query Sate{
    workflowStates(filter:{team:{id:{eq:"%s"}}}){
        nodes{
        id
        name
        }
    }
    }
""" % (team_id)
    result = execute_query("State", get_state_query_text, api_key)
    state_id = None
    for state in result["data"]["workflowStates"]["nodes"]:
        if state["name"] == "Reviewing":
            state_id = state["id"]
            break

    if state_id is None:
        return
    issue_update_text = """
mutation IssueUpdate {
  issueUpdate(
    id: "%s",
    input: {
      stateId: "%s",
    }
  ) {
    success
    issue {
      id
      title
      state {
        id
        name
      }
    }
  }
}
""" % (issue_id, state_id)
    result = execute_query("IssueUpdate", issue_update_text, api_key)


@tool
def get_todo_issue() -> str:
    """
    Get the Todo issue.

    Returns:
        A string describing the current issue.
    """
    global issue_id
    global issue_text
    priority_order = [1, 2, 3, 0, 4]
    for priority in priority_order:
        team_query_text = """
        query Team {
        team(id: "%s") {
            id
            issues(first:1,filter:{
                state:{
                    name:{ eq: "Todo" },
                    }
                priority:{eq:%d}
            }) {
            nodes {
                id
                title
                description
                createdAt
            }
            }
        }
        }
        
        """ % (team_id, priority)

        result = execute_query("Team", team_query_text, api_key, True)
        if len(result["data"]["team"]["issues"]["nodes"]) > 0:
            issue = result["data"]["team"]["issues"]["nodes"][0]
            issue_text = str(issue["title"])
            issue_id = issue["id"]
            description = issue.get("description", None)
            if description is not None:
                issue_text += "\n" + description
            return issue_text

    return "Not Todo issue found"


def generate_agent():
    """
    Generate an agent.

    Returns:
        An agent.
    """
    model = SleepPerLastTokenModelLiteLLM(
        max_tokens=250,
        temperature=0.5,
        model_id=model_id,
        api_base="https://api.groq.com/openai/v1/",
        api_key=groq_api_key,
    )
    agent = CodeAgent(
        model=model,
        tools=[get_todo_issue],  ## add your tools here (don't remove final answer)
        max_steps=1,
        verbosity_level=1,
        grammar=None,
        planning_interval=None,
        name=None,
        description=None,
    )
    return agent


team_id = None


def update_text():
    """
    Get the Todo issue and generate an agent.
    agent solve the issue and return text to Gradio outputs

    Returns:
        A string describing the current issue.
        A string describing the agent advice.
    """

    def get_team_id(team_name):
        teams_text = """
    query Teams {
    teams {
        nodes {
        id
        name
        }
    }
    }
    """
        result = execute_query("Teams", teams_text, api_key)
        for team in result["data"]["teams"]["nodes"]:
            if team["name"] == team_name:
                return team["id"]
        return None

    team_name = "Agent"
    global team_id
    global issue_text
    team_id = get_team_id(team_name)

    if team_id is None:
        return f"Team {team_name} is not found", "Team not found"
    issue_text = "No Issue Found"
    agent_text = "No Agent Advice"

    agent = generate_agent()
    agent_text = agent.run(
        """
First, get the Todo using the get_todo tool.
Then, solve the Todo.
Finally, return the result of solving the Todo.
        """
    )

    # If you duplicate space uncomment below
    # add_comment(issue_id, model_id, agent_text)
    # change_state_reviewing()

    return issue_text, agent_text


with gr.Blocks() as demo:
    gr.HTML("""
            <h1>Initial API-Based Smolagents and Linear.app Integration Example</h1>
<p>Large language models, like 70B parameter models, can often readily utilize tools such as <code>add_comment</code> or <code>change_state</code>, potentially handling multiple issues concurrently.</p>
<p>However, smaller models may require repeated calls to a tool or even fail to utilize it entirely.</p>
<p>Therefore, this initial example focuses on the <code>get_todo_issue()</code> tool.</p>
<h2>Post-Duplication/Cloning Instructions</h2>
            <p>Need Linear.app acount and api key</a>
            <p>change script team name to your team name,add "Reviewing" State in your linear.app team setting<p>
            <p>comment out add_comment(),change_state_reviewing()</p> 
            """)
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Issue")
            # issue = gr.Markdown(load_text("issue.md"))
            issue = gr.Markdown("issue")
        with gr.Column():
            gr.Markdown("## Agent advice(Don't trust them completely)")
            # output = gr.Markdown(load_text("output.md"))
            output = gr.Markdown("agent result")
        demo.load(update_text, inputs=None, outputs=[issue, output])

    # for manual solve
    # bt = gr.Button("Next Todo")
    # bt.click(update_text, inputs=None, outputs=[issue, output])


if __name__ == "__main__":  # without main call demo called twice
    demo.launch()