import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig import gradio as gr MODEL_NAME = "X-D-Lab/MindChat-Qwen-1_8B" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True) model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME, trust_remote_code=True) def chatbot(input_text, history=[]): inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) response, history = model.chat( tokenizer, input_text, history=history, attention_mask=inputs["attention_mask"] ) return response gr.Interface(fn=chatbot, inputs="text", outputs="text", title="MindChat-Qwen").launch()