AkashVD26 commited on
Commit
f66f244
Β·
1 Parent(s): 55d5c44

readme updated finalv1

Browse files
Files changed (1) hide show
  1. README.md +57 -3
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Pdfsense
3
- emoji: 🐨
4
  colorFrom: red
5
  colorTo: red
6
  sdk: streamlit
@@ -11,5 +11,59 @@ license: apache-2.0
11
  short_description: PDF Answering Assistant
12
  ---
13
 
14
- # PDFSense
15
- A PDF question answering assistant with session chat history
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Pdfsense
3
+ emoji: πŸ“œ
4
  colorFrom: red
5
  colorTo: red
6
  sdk: streamlit
 
11
  short_description: PDF Answering Assistant
12
  ---
13
 
14
+ # πŸ“œ PDFSense : PDF Question Answering Assistant with Chat History
15
+
16
+ PDFSense is an LLM-powered Streamlit application that enables users to upload PDFs and ask questions based on the document's content. It uses a Retrieval-Augmented Generation (RAG) approach to provide accurate, context-aware answers by incorporating previous chat history of the current session.
17
+
18
+ [App in Hugging Face Space](https://huggingface.co/spaces/AkashVD26/pdfsense)
19
+
20
+ ## πŸš€ Features
21
+ - Upload and analyze PDF documents.
22
+ - Ask questions about the uploaded PDF in natural language.
23
+ - Retrieve answers using LangChain, FAISS indexing, and Hugging Face embeddings.
24
+ - Maintain conversation context for coherent responses.
25
+
26
+ ## πŸ“š How It Works
27
+ - Upload PDF: Drag and drop your PDF file into the uploader.
28
+ - Ask Questions: Type a question about the PDF's content.
29
+ - Contextual Answers: PDFSense retrieves answers using FAISS and LLMs while maintaining chat history for context.
30
+
31
+ ## πŸ› οΈ Technologies Used
32
+ - Streamlit: Interactive web application framework.
33
+ - LangChain: Framework for creating LLM-based applications.
34
+ - FAISS: Vector search for efficient retrieval.
35
+ - Hugging Face: Pretrained embeddings for document processing.
36
+ - Groq: LLM used for generating responses.
37
+ - PyPDFLoader: Document loader for processing PDFs.
38
+
39
+ ## 🧩 Prerequisites
40
+ Make sure you have the following prerequisites:
41
+
42
+ - [Python 3.8 and above](https://www.python.org)
43
+ - [Hugging Face account](https://huggingface.co)
44
+ - [Hugging Face Access Token](https://huggingface.co/settings/tokens)
45
+ - [Groq API key](https://console.groq.com/keys)
46
+
47
+ ## πŸ“¦ Installation
48
+ If you want to use this locally on your system:
49
+
50
+ ```
51
+ git clone https://github.com/Akashvarma26/PDFSense.git
52
+ ```
53
+
54
+ ```
55
+ pip install -r requirements.txt
56
+ ```
57
+
58
+ ## ▢️ Usage
59
+ Run the Streamlit app locally:
60
+ ```
61
+ streamlit run app.py
62
+ ```
63
+
64
+ ## πŸ™‹β€β™‚οΈ Acknowledgments
65
+ - [LangChain](https://www.langchain.com)
66
+ - [Hugging Face](https://huggingface.co)
67
+ - [FAISS](https://ai.meta.com/tools/faiss/)
68
+ - [Groq](https://groq.com)
69
+ - [streamlit](https://www.langchain.com)