Final app final version
Browse files- app.py +86 -62
- trialapp.py β trial.py +62 -86
app.py
CHANGED
|
@@ -6,112 +6,136 @@ from langchain.chains.combine_documents import create_stuff_documents_chain
|
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.chat_message_histories import ChatMessageHistory
|
| 8 |
from langchain_core.chat_history import BaseChatMessageHistory
|
| 9 |
-
from langchain_core.prompts import ChatPromptTemplate,MessagesPlaceholder
|
| 10 |
from langchain_groq import ChatGroq
|
| 11 |
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 13 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 14 |
from langchain_community.document_loaders import PyPDFLoader
|
| 15 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 16 |
import os
|
| 17 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 18 |
load_dotenv()
|
| 19 |
|
| 20 |
-
# API and model
|
| 21 |
-
os.environ['HF_TOKEN']=os.getenv('HF_TOKEN')
|
| 22 |
-
os.environ['GROQ_API_KEY']=os.getenv('GROQ_API_KEY')
|
| 23 |
-
embeddings=HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 24 |
|
| 25 |
# Streamlit app
|
| 26 |
-
st.title("π―π£π₯π²πΎπππΎ : π―π£π₯ π°ππΎπππππ πΊππ½ π ππππΎππππ ππππ
|
| 27 |
-
st.
|
| 28 |
-
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
-
#
|
| 32 |
if 'store' not in st.session_state:
|
| 33 |
-
st.session_state.store={}
|
| 34 |
-
|
| 35 |
-
# Upload files and
|
| 36 |
-
uploaded_files=st.file_uploader("Drop the
|
|
|
|
| 37 |
if uploaded_files:
|
| 38 |
-
documents=[]
|
| 39 |
for uploaded_file in uploaded_files:
|
| 40 |
-
temppdf=f"./temp.pdf"
|
| 41 |
-
with open(temppdf,"wb") as file:
|
| 42 |
file.write(uploaded_file.getvalue())
|
| 43 |
-
|
| 44 |
-
docs=PyPDFLoader(temppdf).load()
|
| 45 |
documents.extend(docs)
|
|
|
|
| 46 |
# Delete the temp file as we no longer need it
|
| 47 |
if os.path.exists("./temp.pdf"):
|
| 48 |
os.remove("./temp.pdf")
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
faiss_index = FAISS.from_documents(splits, embeddings)
|
| 53 |
-
retriever=faiss_index.as_retriever()
|
| 54 |
|
| 55 |
# Prompts
|
| 56 |
-
context_system_prompt=(
|
| 57 |
-
"Given a chat history and latest user question"
|
| 58 |
"which might reference context in the chat history, "
|
| 59 |
-
"formulate a standalone question
|
| 60 |
-
"without the chat history. Do
|
| 61 |
-
"just reformulate it if needed and otherwise return it as it is"
|
| 62 |
)
|
| 63 |
-
context_prompt=ChatPromptTemplate.from_messages([
|
| 64 |
-
("system",context_system_prompt),
|
| 65 |
MessagesPlaceholder("chat_history"),
|
| 66 |
-
("human","{input}")
|
| 67 |
-
)
|
| 68 |
|
| 69 |
-
history_aware_ret=create_history_aware_retriever(llm,retriever,context_prompt)
|
| 70 |
|
| 71 |
-
system_prompt=(
|
| 72 |
-
"You are 'PDFSense' a PDF reading and answering assistant. "
|
| 73 |
"Use the following pieces of retrieved context to answer "
|
| 74 |
-
"the question. If you don't know the answer, say that you
|
| 75 |
"Answer the questions nicely."
|
| 76 |
"\n\n"
|
| 77 |
"{context}"
|
| 78 |
)
|
| 79 |
|
| 80 |
-
prompt=ChatPromptTemplate.from_messages(
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
)
|
| 87 |
# Chain for the chatbot
|
| 88 |
-
qa_chain=create_stuff_documents_chain(llm,prompt)
|
| 89 |
-
rag_chain=create_retrieval_chain(history_aware_ret,qa_chain)
|
| 90 |
|
| 91 |
-
# Session
|
| 92 |
-
def get_session_history(session:str)-> BaseChatMessageHistory:
|
| 93 |
if session_id not in st.session_state.store:
|
| 94 |
-
st.session_state.store[session_id]=ChatMessageHistory()
|
| 95 |
return st.session_state.store[session_id]
|
| 96 |
-
|
| 97 |
# RAG with history
|
| 98 |
-
conversation_rag=RunnableWithMessageHistory(
|
| 99 |
rag_chain,
|
| 100 |
get_session_history,
|
| 101 |
input_messages_key="input",
|
| 102 |
history_messages_key="chat_history",
|
| 103 |
-
output_messages_key="answer"
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
user_input=st.text_input("Enter question")
|
| 107 |
if user_input:
|
| 108 |
-
session_history=get_session_history(session_id)
|
| 109 |
-
response=conversation_rag.invoke(
|
| 110 |
-
{"input":user_input},
|
| 111 |
config={
|
| 112 |
-
"configurable":{"session_id":session_id}
|
| 113 |
},
|
| 114 |
)
|
| 115 |
-
|
| 116 |
-
st.write("
|
| 117 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.chat_message_histories import ChatMessageHistory
|
| 8 |
from langchain_core.chat_history import BaseChatMessageHistory
|
| 9 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 10 |
from langchain_groq import ChatGroq
|
| 11 |
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 13 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 14 |
from langchain_community.document_loaders import PyPDFLoader
|
|
|
|
| 15 |
import os
|
| 16 |
from dotenv import load_dotenv
|
| 17 |
+
|
| 18 |
+
# Load environment variables
|
| 19 |
load_dotenv()
|
| 20 |
|
| 21 |
+
# API and model settings
|
| 22 |
+
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN')
|
| 23 |
+
os.environ['GROQ_API_KEY'] = os.getenv('GROQ_API_KEY')
|
| 24 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 25 |
|
| 26 |
# Streamlit app
|
| 27 |
+
st.title("π―π£π₯π²πΎπππΎ : π―π£π₯ π°ππΎπππππ πΊππ½ π ππππΎππππ ππππ π²πΎπππππ π’ππΊπ π§ππππππ")
|
| 28 |
+
st.markdown('####')
|
| 29 |
+
st.write("Upload PDFs and ask questions related to the content of the PDFs.")
|
| 30 |
+
llm = ChatGroq(model="Gemma2-9b-It")
|
| 31 |
+
session_id = st.text_input("Session ID", value="common_session")
|
| 32 |
|
| 33 |
+
# Manage chat history
|
| 34 |
if 'store' not in st.session_state:
|
| 35 |
+
st.session_state.store = {}
|
| 36 |
+
st.markdown('####')
|
| 37 |
+
# Upload files and document loading
|
| 38 |
+
uploaded_files = st.file_uploader("Drop the PDF files here", type="pdf", accept_multiple_files=True)
|
| 39 |
+
st.markdown('####')
|
| 40 |
if uploaded_files:
|
| 41 |
+
documents = []
|
| 42 |
for uploaded_file in uploaded_files:
|
| 43 |
+
temppdf = f"./temp.pdf"
|
| 44 |
+
with open(temppdf, "wb") as file:
|
| 45 |
file.write(uploaded_file.getvalue())
|
| 46 |
+
docs = PyPDFLoader(temppdf).load()
|
|
|
|
| 47 |
documents.extend(docs)
|
| 48 |
+
|
| 49 |
# Delete the temp file as we no longer need it
|
| 50 |
if os.path.exists("./temp.pdf"):
|
| 51 |
os.remove("./temp.pdf")
|
| 52 |
+
|
| 53 |
+
# Text splitting and embedding, storing in FAISS index
|
| 54 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
|
| 55 |
+
splits = text_splitter.split_documents(documents)
|
| 56 |
faiss_index = FAISS.from_documents(splits, embeddings)
|
| 57 |
+
retriever = faiss_index.as_retriever()
|
| 58 |
|
| 59 |
# Prompts
|
| 60 |
+
context_system_prompt = (
|
| 61 |
+
"Given a chat history and the latest user question, "
|
| 62 |
"which might reference context in the chat history, "
|
| 63 |
+
"formulate a standalone question that can be understood "
|
| 64 |
+
"without the chat history. Do not answer the question, "
|
| 65 |
+
"just reformulate it if needed and otherwise return it as it is."
|
| 66 |
)
|
| 67 |
+
context_prompt = ChatPromptTemplate.from_messages([
|
| 68 |
+
("system", context_system_prompt),
|
| 69 |
MessagesPlaceholder("chat_history"),
|
| 70 |
+
("human", "{input}")
|
| 71 |
+
])
|
| 72 |
|
| 73 |
+
history_aware_ret = create_history_aware_retriever(llm, retriever, context_prompt)
|
| 74 |
|
| 75 |
+
system_prompt = (
|
| 76 |
+
"You are 'PDFSense', a PDF reading and answering assistant. "
|
| 77 |
"Use the following pieces of retrieved context to answer "
|
| 78 |
+
"the question. If you don't know the answer, say that you don't know. "
|
| 79 |
"Answer the questions nicely."
|
| 80 |
"\n\n"
|
| 81 |
"{context}"
|
| 82 |
)
|
| 83 |
|
| 84 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 85 |
+
("system", system_prompt),
|
| 86 |
+
MessagesPlaceholder("chat_history"),
|
| 87 |
+
("human", "{input}")
|
| 88 |
+
])
|
| 89 |
+
|
|
|
|
| 90 |
# Chain for the chatbot
|
| 91 |
+
qa_chain = create_stuff_documents_chain(llm, prompt)
|
| 92 |
+
rag_chain = create_retrieval_chain(history_aware_ret, qa_chain)
|
| 93 |
|
| 94 |
+
# Session ID storing in chat history
|
| 95 |
+
def get_session_history(session: str) -> BaseChatMessageHistory:
|
| 96 |
if session_id not in st.session_state.store:
|
| 97 |
+
st.session_state.store[session_id] = ChatMessageHistory()
|
| 98 |
return st.session_state.store[session_id]
|
| 99 |
+
|
| 100 |
# RAG with history
|
| 101 |
+
conversation_rag = RunnableWithMessageHistory(
|
| 102 |
rag_chain,
|
| 103 |
get_session_history,
|
| 104 |
input_messages_key="input",
|
| 105 |
history_messages_key="chat_history",
|
| 106 |
+
output_messages_key="answer"
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
user_input = st.text_input("Enter your question")
|
| 110 |
if user_input:
|
| 111 |
+
session_history = get_session_history(session_id)
|
| 112 |
+
response = conversation_rag.invoke(
|
| 113 |
+
{"input": user_input},
|
| 114 |
config={
|
| 115 |
+
"configurable": {"session_id": session_id}
|
| 116 |
},
|
| 117 |
)
|
| 118 |
+
|
| 119 |
+
st.write("### Response")
|
| 120 |
+
st.success(response['answer'])
|
| 121 |
+
# Display the chat history
|
| 122 |
+
st.write("### Chat History")
|
| 123 |
+
for message in session_history.messages:
|
| 124 |
+
if isinstance(message, dict): # Handle cases where messages might be dictionaries
|
| 125 |
+
role = message.get("role", "user") # Default role is 'user'
|
| 126 |
+
content = message.get("content", "")
|
| 127 |
+
else:
|
| 128 |
+
# For LangChain message objects
|
| 129 |
+
role = "user" if isinstance(message, ChatMessageHistory) else "assistant"
|
| 130 |
+
content = message.content
|
| 131 |
+
|
| 132 |
+
if role == "user":
|
| 133 |
+
with st.chat_message("user"):
|
| 134 |
+
st.success(content)
|
| 135 |
+
elif role == "assistant":
|
| 136 |
+
with st.chat_message("assistant"):
|
| 137 |
+
st.success(content)
|
| 138 |
+
elif role == "system":
|
| 139 |
+
with st.chat_message("system"):
|
| 140 |
+
st.markdown(f"**System Message:** {content}")
|
| 141 |
+
#st.write("Assistant:", response['answer'])
|
trialapp.py β trial.py
RENAMED
|
@@ -6,136 +6,112 @@ from langchain.chains.combine_documents import create_stuff_documents_chain
|
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.chat_message_histories import ChatMessageHistory
|
| 8 |
from langchain_core.chat_history import BaseChatMessageHistory
|
| 9 |
-
from langchain_core.prompts import ChatPromptTemplate,
|
| 10 |
from langchain_groq import ChatGroq
|
| 11 |
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 13 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 14 |
from langchain_community.document_loaders import PyPDFLoader
|
|
|
|
| 15 |
import os
|
| 16 |
from dotenv import load_dotenv
|
| 17 |
-
|
| 18 |
-
# Load environment variables
|
| 19 |
load_dotenv()
|
| 20 |
|
| 21 |
-
# API and model
|
| 22 |
-
os.environ['HF_TOKEN']
|
| 23 |
-
os.environ['GROQ_API_KEY']
|
| 24 |
-
embeddings
|
| 25 |
|
| 26 |
# Streamlit app
|
| 27 |
-
st.title("π―π£π₯π²πΎπππΎ : π―π£π₯ π°ππΎπππππ πΊππ½ π ππππΎππππ ππππ
|
| 28 |
-
st.
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
session_id = st.text_input("Session ID", value="common_session")
|
| 32 |
|
| 33 |
-
#
|
| 34 |
if 'store' not in st.session_state:
|
| 35 |
-
st.session_state.store
|
| 36 |
-
|
| 37 |
-
# Upload files and
|
| 38 |
-
uploaded_files
|
| 39 |
-
st.markdown('####')
|
| 40 |
if uploaded_files:
|
| 41 |
-
documents
|
| 42 |
for uploaded_file in uploaded_files:
|
| 43 |
-
temppdf
|
| 44 |
-
with open(temppdf,
|
| 45 |
file.write(uploaded_file.getvalue())
|
| 46 |
-
|
|
|
|
| 47 |
documents.extend(docs)
|
| 48 |
-
|
| 49 |
# Delete the temp file as we no longer need it
|
| 50 |
if os.path.exists("./temp.pdf"):
|
| 51 |
os.remove("./temp.pdf")
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
text_splitter
|
| 55 |
-
splits = text_splitter.split_documents(documents)
|
| 56 |
faiss_index = FAISS.from_documents(splits, embeddings)
|
| 57 |
-
retriever
|
| 58 |
|
| 59 |
# Prompts
|
| 60 |
-
context_system_prompt
|
| 61 |
-
"Given a chat history and
|
| 62 |
"which might reference context in the chat history, "
|
| 63 |
-
"formulate a standalone question
|
| 64 |
-
"without the chat history. Do
|
| 65 |
-
"just reformulate it if needed and otherwise return it as it is
|
| 66 |
)
|
| 67 |
-
context_prompt
|
| 68 |
-
("system",
|
| 69 |
MessagesPlaceholder("chat_history"),
|
| 70 |
-
("human",
|
| 71 |
-
|
| 72 |
|
| 73 |
-
history_aware_ret
|
| 74 |
|
| 75 |
-
system_prompt
|
| 76 |
-
"You are 'PDFSense'
|
| 77 |
"Use the following pieces of retrieved context to answer "
|
| 78 |
-
"the question. If you don't know the answer, say that you
|
| 79 |
"Answer the questions nicely."
|
| 80 |
"\n\n"
|
| 81 |
"{context}"
|
| 82 |
)
|
| 83 |
|
| 84 |
-
prompt
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
| 90 |
# Chain for the chatbot
|
| 91 |
-
qa_chain
|
| 92 |
-
rag_chain
|
| 93 |
|
| 94 |
-
# Session
|
| 95 |
-
def get_session_history(session:
|
| 96 |
if session_id not in st.session_state.store:
|
| 97 |
-
st.session_state.store[session_id]
|
| 98 |
return st.session_state.store[session_id]
|
| 99 |
-
|
| 100 |
# RAG with history
|
| 101 |
-
conversation_rag
|
| 102 |
rag_chain,
|
| 103 |
get_session_history,
|
| 104 |
input_messages_key="input",
|
| 105 |
history_messages_key="chat_history",
|
| 106 |
-
output_messages_key="answer"
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
user_input
|
| 110 |
if user_input:
|
| 111 |
-
session_history
|
| 112 |
-
response
|
| 113 |
-
{"input":
|
| 114 |
config={
|
| 115 |
-
"configurable":
|
| 116 |
},
|
| 117 |
)
|
| 118 |
-
|
| 119 |
-
st.write("
|
| 120 |
-
st.
|
| 121 |
-
# Display the chat history
|
| 122 |
-
st.write("### Chat History")
|
| 123 |
-
for message in session_history.messages:
|
| 124 |
-
if isinstance(message, dict): # Handle cases where messages might be dictionaries
|
| 125 |
-
role = message.get("role", "user") # Default role is 'user'
|
| 126 |
-
content = message.get("content", "")
|
| 127 |
-
else:
|
| 128 |
-
# For LangChain message objects
|
| 129 |
-
role = "user" if isinstance(message, ChatMessageHistory) else "assistant"
|
| 130 |
-
content = message.content
|
| 131 |
-
|
| 132 |
-
if role == "user":
|
| 133 |
-
with st.chat_message("user"):
|
| 134 |
-
st.success(content)
|
| 135 |
-
elif role == "assistant":
|
| 136 |
-
with st.chat_message("assistant"):
|
| 137 |
-
st.success(content)
|
| 138 |
-
elif role == "system":
|
| 139 |
-
with st.chat_message("system"):
|
| 140 |
-
st.markdown(f"**System Message:** {content}")
|
| 141 |
-
#st.write("Assistant:", response['answer'])
|
|
|
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.chat_message_histories import ChatMessageHistory
|
| 8 |
from langchain_core.chat_history import BaseChatMessageHistory
|
| 9 |
+
from langchain_core.prompts import ChatPromptTemplate,MessagesPlaceholder
|
| 10 |
from langchain_groq import ChatGroq
|
| 11 |
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 13 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 14 |
from langchain_community.document_loaders import PyPDFLoader
|
| 15 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 16 |
import os
|
| 17 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 18 |
load_dotenv()
|
| 19 |
|
| 20 |
+
# API and model setting
|
| 21 |
+
os.environ['HF_TOKEN']=os.getenv('HF_TOKEN')
|
| 22 |
+
os.environ['GROQ_API_KEY']=os.getenv('GROQ_API_KEY')
|
| 23 |
+
embeddings=HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 24 |
|
| 25 |
# Streamlit app
|
| 26 |
+
st.title("π―π£π₯π²πΎπππΎ : π―π£π₯ π°ππΎπππππ πΊππ½ π ππππΎππππ ππππ ππΎπππππ πΌππΊπ πππππππ")
|
| 27 |
+
st.write("upload pdfs and ask questions related to pdfs")
|
| 28 |
+
llm=ChatGroq(model="Gemma2-9b-It")
|
| 29 |
+
session_id=st.text_input("Session id",value="common_session")
|
|
|
|
| 30 |
|
| 31 |
+
# manage chat history
|
| 32 |
if 'store' not in st.session_state:
|
| 33 |
+
st.session_state.store={}
|
| 34 |
+
|
| 35 |
+
# Upload files and documents loading
|
| 36 |
+
uploaded_files=st.file_uploader("Drop the pdf files here",type="pdf",accept_multiple_files=True)
|
|
|
|
| 37 |
if uploaded_files:
|
| 38 |
+
documents=[]
|
| 39 |
for uploaded_file in uploaded_files:
|
| 40 |
+
temppdf=f"./temp.pdf"
|
| 41 |
+
with open(temppdf,"wb") as file:
|
| 42 |
file.write(uploaded_file.getvalue())
|
| 43 |
+
file_name=uploaded_file.name
|
| 44 |
+
docs=PyPDFLoader(temppdf).load()
|
| 45 |
documents.extend(docs)
|
|
|
|
| 46 |
# Delete the temp file as we no longer need it
|
| 47 |
if os.path.exists("./temp.pdf"):
|
| 48 |
os.remove("./temp.pdf")
|
| 49 |
+
# Text splitting and embedding and storing in chromadb
|
| 50 |
+
text_splitter=RecursiveCharacterTextSplitter(chunk_size=5000,chunk_overlap=500)
|
| 51 |
+
splits=text_splitter.split_documents(documents)
|
|
|
|
| 52 |
faiss_index = FAISS.from_documents(splits, embeddings)
|
| 53 |
+
retriever=faiss_index.as_retriever()
|
| 54 |
|
| 55 |
# Prompts
|
| 56 |
+
context_system_prompt=(
|
| 57 |
+
"Given a chat history and latest user question"
|
| 58 |
"which might reference context in the chat history, "
|
| 59 |
+
"formulate a standalone question which can be understood "
|
| 60 |
+
"without the chat history. Do Not answer the question, "
|
| 61 |
+
"just reformulate it if needed and otherwise return it as it is"
|
| 62 |
)
|
| 63 |
+
context_prompt=ChatPromptTemplate.from_messages([
|
| 64 |
+
("system",context_system_prompt),
|
| 65 |
MessagesPlaceholder("chat_history"),
|
| 66 |
+
("human","{input}")]
|
| 67 |
+
)
|
| 68 |
|
| 69 |
+
history_aware_ret=create_history_aware_retriever(llm,retriever,context_prompt)
|
| 70 |
|
| 71 |
+
system_prompt=(
|
| 72 |
+
"You are 'PDFSense' a PDF reading and answering assistant. "
|
| 73 |
"Use the following pieces of retrieved context to answer "
|
| 74 |
+
"the question. If you don't know the answer, say that you dont know."
|
| 75 |
"Answer the questions nicely."
|
| 76 |
"\n\n"
|
| 77 |
"{context}"
|
| 78 |
)
|
| 79 |
|
| 80 |
+
prompt=ChatPromptTemplate.from_messages(
|
| 81 |
+
[
|
| 82 |
+
("system",system_prompt),
|
| 83 |
+
MessagesPlaceholder("chat_history"),
|
| 84 |
+
("human","{input}")
|
| 85 |
+
]
|
| 86 |
+
)
|
| 87 |
# Chain for the chatbot
|
| 88 |
+
qa_chain=create_stuff_documents_chain(llm,prompt)
|
| 89 |
+
rag_chain=create_retrieval_chain(history_aware_ret,qa_chain)
|
| 90 |
|
| 91 |
+
# Session Id storing in chat history
|
| 92 |
+
def get_session_history(session:str)-> BaseChatMessageHistory:
|
| 93 |
if session_id not in st.session_state.store:
|
| 94 |
+
st.session_state.store[session_id]=ChatMessageHistory()
|
| 95 |
return st.session_state.store[session_id]
|
| 96 |
+
|
| 97 |
# RAG with history
|
| 98 |
+
conversation_rag=RunnableWithMessageHistory(
|
| 99 |
rag_chain,
|
| 100 |
get_session_history,
|
| 101 |
input_messages_key="input",
|
| 102 |
history_messages_key="chat_history",
|
| 103 |
+
output_messages_key="answer"
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
user_input=st.text_input("Enter question")
|
| 107 |
if user_input:
|
| 108 |
+
session_history=get_session_history(session_id)
|
| 109 |
+
response=conversation_rag.invoke(
|
| 110 |
+
{"input":user_input},
|
| 111 |
config={
|
| 112 |
+
"configurable":{"session_id":session_id}
|
| 113 |
},
|
| 114 |
)
|
| 115 |
+
st.write(st.session_state.store)
|
| 116 |
+
st.write("Assistant:",response['answer'])
|
| 117 |
+
st.write("Chat History",session_history.messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|