AkashVD26 commited on
Commit
26b8cf3
Β·
1 Parent(s): d43d048

hf space config commented

Browse files
Files changed (2) hide show
  1. .github/workflows/main.yml +1 -1
  2. README.md +18 -15
.github/workflows/main.yml CHANGED
@@ -17,4 +17,4 @@ jobs:
17
  - name: Push to hub
18
  env:
19
  HF_TOKEN1: ${{ secrets.HF_TOKEN1 }}
20
- run: git push --force https://AkashVD26:[email protected]/spaces/AkashVD26/pdfsense main
 
17
  - name: Push to hub
18
  env:
19
  HF_TOKEN1: ${{ secrets.HF_TOKEN1 }}
20
+ run: git push --force https://AkashVD26:[email protected]/spaces/AkashVD26/pdfsense main
README.md CHANGED
@@ -1,3 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # πŸ“œ PDFSense : PDF Question Answering Assistant with Chat History
2
 
3
  PDFSense is an LLM-powered Streamlit application that enables users to upload PDFs and ask questions based on the document's content. It uses a Retrieval-Augmented Generation (RAG) approach to provide accurate, context-aware answers by incorporating previous chat history of the current session.
@@ -53,18 +70,4 @@ streamlit run app.py
53
  - [Hugging Face](https://huggingface.co)
54
  - [FAISS](https://ai.meta.com/tools/faiss/)
55
  - [Groq](https://groq.com)
56
- - [streamlit](https://www.langchain.com)
57
-
58
- ## Configuration for HF Space
59
- ---
60
- title: Pdfsense
61
- emoji: πŸ“œ
62
- colorFrom: red
63
- colorTo: red
64
- sdk: streamlit
65
- sdk_version: 1.40.2
66
- app_file: app.py
67
- pinned: false
68
- license: apache-2.0
69
- short_description: PDF Answering Assistant
70
- ---
 
1
+ <!--
2
+ ---
3
+ title: Pdfsense
4
+ emoji: πŸ“œ
5
+ colorFrom: red
6
+ colorTo: red
7
+ sdk: streamlit
8
+ sdk_version: 1.40.2
9
+ app_file: app.py
10
+ pinned: false
11
+ license: apache-2.0
12
+ short_description: PDF Answering Assistant
13
+ ---
14
+
15
+ Check out the configuration reference at [Hugging Face Spaces Config](https://huggingface.co/docs/hub/spaces-config-reference).
16
+ -->
17
+
18
  # πŸ“œ PDFSense : PDF Question Answering Assistant with Chat History
19
 
20
  PDFSense is an LLM-powered Streamlit application that enables users to upload PDFs and ask questions based on the document's content. It uses a Retrieval-Augmented Generation (RAG) approach to provide accurate, context-aware answers by incorporating previous chat history of the current session.
 
70
  - [Hugging Face](https://huggingface.co)
71
  - [FAISS](https://ai.meta.com/tools/faiss/)
72
  - [Groq](https://groq.com)
73
+ - [streamlit](https://www.langchain.com)