# -*- coding: utf-8 -*- """Fake News Generator & Detector.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1k_GVU6WO9Mggr87RxntJFq2S1M6R4dI0 # 📰 **Fake News Generator & Detector** This educational and awareness-focused Generative AI application explores the dual power of AI in creating and detecting fake news. It allows users to generate fake news headlines based on a selected category (e.g., politics, tech), a subject or entity (e.g., Apple, Government), and number of headlines. It also provides a detection system where users can input a news snippet to check whether it is likely to be fake or real using a fine-tuned BERT model. **The application is built using:** Transformers library (For GPT-2 based fake news generation and BERT-based fake news classification) Gradio (To create a clean, tabbed web interface for both generation and detection) Google Colab / Python (For backend development, model training/fine-tuning, and deployment) **This project aims to:** ✨ Demonstrate the capabilities and risks of large language models 🔍 Raise awareness about misinformation in media 🧠 Promote responsible AI development through practical exploration This project showcases how AI can both contribute to and combat misinformation, serving as a tool for learning, experimentation, and ethics in AI.""" # app.py import torch import torch.nn.functional as F from transformers import ( GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, AutoModelForSequenceClassification ) import gradio as gr # Device setup device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load GPT-2 for Fake News Generation gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") gpt2_model = GPT2LMHeadModel.from_pretrained("gpt2").to(device) gpt2_model.eval() # Headline generation function def generate_fake_headlines(category, subject, num_headlines=1, max_length=20): headlines = [] for i in range(num_headlines): prompt = f"Write a fake {category} news headline about {subject}:\n" input_ids = gpt2_tokenizer.encode(prompt, return_tensors='pt').to(device) output = gpt2_model.generate( input_ids, max_length=len(input_ids[0]) + max_length, temperature=0.9, top_p=0.9, do_sample=True, pad_token_id=gpt2_tokenizer.eos_token_id, no_repeat_ngram_size=2, early_stopping=True ) generated_text = gpt2_tokenizer.decode(output[0], skip_special_tokens=True) headline = generated_text.replace(prompt, "").strip().split("\n")[0] headlines.append(headline) return headlines # Gradio function wrapper def gradio_fake_news_generator(category, subject, num_headlines): try: num = int(num_headlines) if num <= 0 or num > 10: return "Please enter a number between 1 and 10." except: return "Invalid input for number of headlines." headlines = generate_fake_headlines(category, subject, num) return "\n".join([f"{i+1}. {h}" for i, h in enumerate(headlines)]) # Load BERT model for fake news detection (no token required) bert_tokenizer = AutoTokenizer.from_pretrained("Pulk17/Fake-News-Detection") bert_model = AutoModelForSequenceClassification.from_pretrained("Pulk17/Fake-News-Detection").to(device) bert_model.eval() # Detection function def detect_fake_news(text): inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device) outputs = bert_model(**inputs) probs = F.softmax(outputs.logits, dim=1) predicted_class = torch.argmax(probs, dim=1).item() confidence = torch.max(probs).item() label = "FAKE 🟥" if predicted_class == 0 else "REAL 🟩" return f"Prediction: {label} ({confidence*100:.2f}% confidence)" # Gradio interfaces generator_interface = gr.Interface( fn=gradio_fake_news_generator, inputs=[ gr.Textbox(label="News Category (e.g., politics, tech)"), gr.Textbox(label="Main Subject / Entity (e.g., Apple, Government)"), gr.Textbox(label="Number of Headlines (1-10)") ], outputs=gr.Textbox(label="Generated Fake News Headlines"), title="📰 Fake News Generator", description="Generate fake news headlines using GPT-2" ) detector_interface = gr.Interface( fn=detect_fake_news, inputs=gr.Textbox(lines=5, label="Enter full news text"), outputs=gr.Textbox(label="Fake News Detection Result"), title="🔍 Fake News Detector", description="Detect whether a news article is FAKE or REAL using BERT" ) # Combine both interfaces gr.TabbedInterface([generator_interface, detector_interface], tab_names=["📰 Generator", "🔍 Detector"]).launch()