import gradio as gr
import requests
import os
import time
from datetime import timedelta
from openai import OpenAI
from pinecone import Pinecone
import uuid
import re
import pandas as pd
from google.cloud import storage
from elevenlabs.client import ElevenLabs, AsyncElevenLabs
from elevenlabs import play, save, Voice, stream
from pymongo.mongo_client import MongoClient
from utils import create_folders
from gcp import download_credentials
from csv import writer
import asyncio
import httpx
from dotenv import load_dotenv
load_dotenv()


OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MODEL_OPENAI = os.getenv("MODEL_OPENAI")

PINECONE_API_TOKEN = os.getenv("PINECONE_API_TOKEN")
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENV")
PINECONE_HOST = os.getenv("PINECONE_HOST")

DB_USER_NAME = os.getenv("DB_USER_NAME")
DB_PASSWORD = os.getenv("DB_PASSWORD")

API_KEY_ELEVENLABS = os.getenv("API_KEY_ELEVENLABS")

D_ID_KEY = os.getenv("D_ID_KEY")

IMG_XAVY = os.getenv("IMG_XAVY")

CREDENTIALS_GCP = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")
NAME_BUCKET = os.getenv("NAME_BUCKET")

URL_AUDIO = os.getenv("URL_AUDIO")

# Chat
openai_client = OpenAI(api_key=OPENAI_API_KEY)

# Vector store
pc = Pinecone(api_key=PINECONE_API_TOKEN)
index = pc.Index(host=PINECONE_HOST)

# Database
uri = f"mongodb+srv://{DB_USER_NAME}:{DB_PASSWORD}@cluster-rob01.3fpztfw.mongodb.net/?retryWrites=true&w=majority&appName=cluster-rob01"
client = MongoClient(uri)
db = client["ChatCrunchyroll"]
collection = db["history_msg"]


def _save_history_msg():

    return None


def _add_question_vectorstore(question: str, response: str):
    vector_id = str(uuid.uuid4())
    vector_embedding = _call_embedding(question)
    vector_metadata = {
        'question': question,
        'text': response
    }
    index.upsert([(vector_id, vector_embedding, vector_metadata)])


def _update_elements(question, chatbot, output, history_messages, url_audio, url_video, df_table_times):
    chatbot.append([question, output])
    new_comp_audio = gr.Audio(value=str(url_audio), autoplay=False, label="Audio")
    new_comp_video = gr.Video(value=str(url_video), autoplay=True, height=400, label="Video")

    history_messages.append({'role': 'user', 'content': question})
    history_messages.append({'role': 'assistant', 'content': output})

    return chatbot, new_comp_audio, new_comp_video, df_table_times


def _query_pinecone(embedding):
    results = index.query(
                    vector=embedding,
                    top_k=10,
                    include_metadata=True,
                )

    final_results = """"""
    for result in results['matches']:
        final_results += f"{result['metadata']['text']}\n"

    return final_results


def _general_prompt(context, option_prompt, general_prompt):
    if option_prompt == "Default":
        with open("prompt_general.txt", "r") as file:
            file_prompt = file.read().replace("\n", "")
    elif option_prompt == "Custom":
        file_prompt = general_prompt
    
    context_prompt = file_prompt.replace('CONTEXT', context)
    print(context_prompt)
    print("--------------------")

    return context_prompt


def _call_embedding(text: str):
    response = openai_client.embeddings.create(
        input=text,
        model='text-embedding-ada-002'
    )

    return response.data[0].embedding


def _call_gpt(prompt: str, message: str):
    response = openai_client.chat.completions.create(
        model=MODEL_OPENAI,
        temperature=0.2,
        messages=[
            {'role': 'system', 'content': prompt},
            {'role': 'user', 'content': message}
        ]
    )
        
    return response.choices[0].message.content


def _call_gpt_standalone(prompt: str):
    response = openai_client.chat.completions.create(
        model=MODEL_OPENAI,
        temperature=0.2,
        messages=[
            {'role': 'system', 'content': prompt},
        ]
    )

    return response.choices[0].message.content


def _get_standalone_question(question, history_messages, option_prompt, standalone_prompt):
    if option_prompt == "Default":
        with open("prompt_standalone_message.txt", "r") as file:
            file_prompt_standalone = file.read().replace("\n", "")
    elif option_prompt == "Custom":
        file_prompt_standalone = standalone_prompt

    history = ''
    for i, msg in enumerate(history_messages):
        try:
            if i == 0:
                continue  # Omit the prompt
            if i % 2 == 0:
                history += f'user: {msg["content"]}\n'
            else:
                history += f'assistant: {msg["content"]}\n'
        except Exception as e:
            print(e)
    
    prompt_standalone = file_prompt_standalone.replace('HISTORY', history).replace('QUESTION', question)
    print(prompt_standalone)
    print("------------------")
    standalone_msg_q = _call_gpt_standalone(prompt_standalone)
    print(standalone_msg_q)
    print("------------------")

    return standalone_msg_q


def _create_clean_message(text: str):
    clean_answer = re.sub(r'http[s]?://\S+', 'el siguiente link', text)
    return clean_answer


async def _create_audio(clean_text: str, option_audio: str):
    download_credentials()
    create_folders()
    
    STORAGE_CLIENT = storage.Client.from_service_account_json(CREDENTIALS_GCP)

    unique_id = str(uuid.uuid4())
    signed_url_audio = "None"

    if option_audio == "Elevenlabs":
        # Create audio file with elevenlabs
        client_elevenlabs = ElevenLabs(api_key=API_KEY_ELEVENLABS)
        voice_custom = Voice(voice_id = "ZQe5CZNOzWyzPSCn5a3c")

        audio = client_elevenlabs.generate(
            text=clean_text,
            voice=voice_custom,
            model="eleven_multilingual_v2"
        )

        source_audio_file_name = f'./audios/file_audio_{unique_id}.wav'

        try:
            save(audio, source_audio_file_name)
        except Exception as e:
            print(e)

        # Save audio and get url of gcp
        destination_blob_name_audio = unique_id + '.wav'
        
        bucket = STORAGE_CLIENT.bucket(NAME_BUCKET)
        blob = bucket.blob(destination_blob_name_audio)
        try:
            blob.upload_from_filename(source_audio_file_name)
        except Exception as e:
            print(e)

        try:
            url_expiration = timedelta(minutes=15)
            signed_url_audio = blob.generate_signed_url(expiration=url_expiration)
        except Exception as e:
            print(e)
    
    elif option_audio == "XTTS":
        params = {'text': clean_text, 'language': 'es'}
        headers = {'accept': 'application/json'}

        # Makes a request to the instance with the audio api
        async with httpx.AsyncClient() as client:
            try:
                response = await client.get(URL_AUDIO, params=params, headers=headers, timeout=120)
            except Exception as e:
                print(f'There is a problem with the audio. Check that instance. ERROR: {e}')

        # Check if everything was successful
        if response.status_code == 200:
            r = response.json()
            signed_url_audio = r['link_audio']
        else:
            print(f'There is a problem with the audio. Check that instance. ERROR: {response.status_code}')

    return signed_url_audio, unique_id


def _create_video(link_audio: str, unique_id: str):
    download_credentials()
    create_folders()
    
    STORAGE_CLIENT = storage.Client.from_service_account_json(CREDENTIALS_GCP)
    bucket = STORAGE_CLIENT.bucket(NAME_BUCKET)

    # Create video talk with file audio created by elevenlabs api
    url_did = "https://api.d-id.com/talks"

    payload = {
        "script": {
            "type": "audio",
            "provider": {
                "type": "microsoft",
                "voice_id": "en-US-JennyNeural"
            },
            "ssml": "false",
            "audio_url": link_audio
        },
        "config": {
            "fluent": "false",
            "pad_audio": "0.0",
            "stitch": True
        },
        "source_url": IMG_XAVY
    }
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "authorization": f"Basic {D_ID_KEY}"
    }

    request_create_talk = requests.post(url_did, json=payload, headers=headers)
    resp_create_talk = request_create_talk.json()

    talk_id = "None"
    try:
        talk_id = resp_create_talk['id']
    except Exception as e:
        print(e)

    # Get url of video file
    url_get_talk_id = f"https://api.d-id.com/talks/{talk_id}"

    
    while True:
        request_video_url = requests.get(url_get_talk_id, headers=headers)
        resp_video_url = request_video_url.json()

        if resp_video_url['status'] == 'done':
            break
        # Sleep until the video is ready
        time.sleep(0.5)

    result_url_video = resp_video_url['result_url']

    # Saves the video into a file to later upload it to the GCP
    source_video_file_name = f'./videos/video_final_{unique_id}.mp4'
    request_video = requests.get(result_url_video)
    if request_video.status_code == 200:
        with open(source_video_file_name, 'wb') as outfile:
            outfile.write(request_video.content)

    # Save video file to the GCP
    destination_blob_name_video = unique_id + '.mp4'

    # Configure bucket
    blob = bucket.blob(destination_blob_name_video)
    try:
        blob.upload_from_filename(source_video_file_name)
    except Exception as e:
        print(e)

    signed_url_video = "None"
    try:
        url_expiration_video = timedelta(minutes=15)
        signed_url_video = blob.generate_signed_url(expiration=url_expiration_video)
    except Exception as e:
        print(e)

    return signed_url_video


def get_answer(question: str, chatbot: list[tuple[str, str]], history_messages, comp_audio, comp_video, df_table, option_audio, option_prompt, general_prompt, standalone_prompt):
    """
    Gets the answer of the chatbot
    """

    if len(chatbot) == 8:
        message_output = 'Un placer haberte ayudado, hasta luego!'
    else:
        start_get_standalone_question = time.time()
        standalone_msg_q = _get_standalone_question(question, history_messages, option_prompt, standalone_prompt) # create standalone question or message
        end_get_standalone_question = time.time()
        time_get_standalone_question = end_get_standalone_question - start_get_standalone_question

        start_call_embedding = time.time()
        output_embedding = _call_embedding(standalone_msg_q) # create embedding of standalone question or message
        end_call_embedding = time.time()
        time_call_embedding = end_call_embedding - start_call_embedding

        start_query_pinecone = time.time()
        best_results = _query_pinecone(output_embedding) # get nearest embeddings
        end_query_pinecone = time.time()
        time_query_pinecone = end_query_pinecone - start_query_pinecone

        start_general_prompt = time.time()
        final_context_prompt = _general_prompt(best_results, option_prompt, general_prompt) # create context/general prompt
        end_general_prompt = time.time()
        time_general_prompt = end_general_prompt - start_general_prompt

        start_call_gpt = time.time()
        message_output = _call_gpt(final_context_prompt, question) # final response (to user)
        end_call_gpt = time.time()
        time_call_gpt = end_call_gpt - start_call_gpt

    if "Respuesta:" in message_output:
        message_output.replace("Respuesta:", "")

    start_create_clean_message = time.time()
    processed_message = _create_clean_message(message_output) # clean message output
    end_create_clean_message = time.time()
    time_create_clean_message = end_create_clean_message - start_create_clean_message
    
    start_create_audio = time.time()
    url_audio, unique_id = asyncio.run(_create_audio(processed_message, option_audio)) # create audio
    end_create_audio = time.time()
    time_create_audio = end_create_audio - start_create_audio

    start_create_video = time.time()
    url_video = _create_video(url_audio, unique_id) # create video with d-id no streaming
    end_create_video = time.time()
    time_create_video = end_create_video - start_create_video

    final_time = time_get_standalone_question + time_call_embedding + time_query_pinecone + time_general_prompt
    final_time += (time_call_gpt + time_create_clean_message + time_create_audio + time_create_video)

    df_table = pd.DataFrame(df_table)
    df_table.loc[len(df_table.index)] = [question,
                                         message_output,
                                         time_get_standalone_question,
                                         time_call_embedding,
                                         time_query_pinecone,
                                         time_general_prompt,
                                         time_call_gpt,
                                         time_create_clean_message,
                                         time_create_audio,
                                         time_create_video,
                                         final_time]

    new_df_table = gr.DataFrame(df_table, interactive=False, visible=True)

    print(history_messages)

    return _update_elements(question, chatbot, message_output, history_messages, url_audio, url_video, new_df_table)


def init_greeting(chatbot, history_messages):
    if len(chatbot) == 0:
        greeting = ('Hola 👋, soy tu asistente de recomendación de series y películas animadas en Crunchyroll. ¿En qué puedo ayudarte hoy?')
        history_messages.append({'role': 'assistant', 'content': greeting})
        chatbot.append([None, greeting])

    return chatbot, history_messages


def export_dataframe(df):
    final_df = pd.DataFrame(df)
    final_df = final_df.iloc[1:]
    final_df.to_csv("./csv_times/csv_times.csv", index=False, encoding='utf-8')
    
    return gr.File(value="./csv_times/csv_times.csv", visible=True)