Spaces:
Runtime error
Runtime error
File size: 10,365 Bytes
e0d9c8e 4df6e8a e0d9c8e f1e32a6 e0d9c8e 797a248 e0d9c8e 797a248 e0d9c8e 797a248 e0d9c8e 797a248 e0d9c8e 797a248 e0d9c8e 797a248 e0d9c8e 797a248 e0d9c8e 797a248 e0d9c8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import csv
import uuid
import json
import logging
import pinecone
import gradio as gr
from PIL import Image
from typing import Union
from openai import Client
from pinecone import Index
from services import audio_model, gcp
if not os.path.exists('tts_model'): # Get TTS model
audio_model.download_model()
from services.audio import *
from services.video import *
pinecone.init(api_key=os.getenv('PINECONE_API_KEY'), environment=os.getenv('PINECONE_ENV'))
INDEX = Index(os.getenv('PINECONE_INDEX'))
OPENAI_CLIENT = Client()
TRANSLATE_LANGUAGES = {'español': 'es', 'ingles': 'en', 'portugués': 'pt'}
TRANSLATE_GREET = {'Saludo': 'greeting', 'Despedida': 'goodbye', 'Error': 'error'}
def add_data_table(table: list[list[str]], *data: str) -> tuple[list[list[str]], list[str]]:
"""
Adds the data to the table. Some data consist of two columns others only one.
So depending on that, the new row and returned value will be different.
:param table: table to add the data to
:param data: new row to be added to the table
:return: updated table and list of strings for cleaning the input
"""
if len(data) == 3: # It is the greet tab
new_value = '', *data[1:]
elif data[-1] in ['español', 'ingles', 'portugués']:
new_value = '', data[-1]
else:
new_value = '', ''
# The table is empty, do not append it but replace the first row
if all(column == '' for column in table[0]):
table[0] = ['❌', *data]
# Add the new data
else:
table.append(['❌', *data])
return table, *new_value
def remove_data_table(table: list[list[str]], evt: gr.SelectData) -> list[list[str]]:
"""
Deletes a row on the table if the selected column is the first one.
:param table: clicked table
:param evt: the event (has info of the position of the click)
:return: updated table
"""
# The clicked column is not the first one (the one with the X), do not do anything
if evt.index[1] != 0:
return table
# The list only has one row, do not delete it, just put the default one
if len(table) == 1:
table[0] = ['' for _ in range(len(table[0]))]
# Delete the row
else:
del table[evt.index[0]]
return table
def add_language(languages: list[str]) -> Union[gr.Error, tuple[gr.helpers, gr.helpers, gr.helpers]]:
"""
Updated the dropdown with the selected languages
:param languages: list of selected languages
:return: three updated dropdowns if at least 1 language was selected, otherwise an error
"""
if len(languages) == 0:
raise gr.Error('Debe seleccionar al menos 1 idioma')
return (
gr.update(choices=[i for i in languages], value=languages[0], interactive=True),
gr.update(choices=[i for i in languages], value=languages[0], interactive=True),
gr.update(choices=[i for i in languages], value=languages[0], interactive=True)
)
def create_chatbot(
client: str, name: str, messages_table: list[list[str]], random_table: list[list[str]],
questions_table: list[list[str]], image: Image
) -> gr.helpers:
"""
Creation of the chatbot. It creates all the audios, videos csv files for the given tables
(greetings, goodbyes, errors and random) and uploads them to GCP, and it creates the
vectorstore with the given questions and answers.
:param client: name of the client (Nosotras, Visit Orlando, etc.)
:param name: name of the chatbot (Bella, Roomie, etc.)
:param messages_table: table with the greetings, goodbyes and errors messages
:param random_table: table with the random data about the client
:param questions_table: table with the questions and answers for each question
:param image: image used as base for the videos
:return: updates the value of a button (know lets know the user if the process is done or there was an error)
"""
# Set up general info
client_name = client.lower().replace(' ', '-')
_ = name.lower() # TODO: use it
# Group messages by their type (greeting, goodbye or error) and language
messages = dict()
for message in messages_table:
msg = message[1]
type_msg = TRANSLATE_GREET[message[2]]
language_msg = TRANSLATE_LANGUAGES[message[-1]]
os.makedirs(f'assets/{client_name}/{type_msg}s', exist_ok=True)
if type_msg not in messages:
messages[type_msg] = {language_msg: [msg]}
else:
if language_msg not in messages[type_msg]:
messages[type_msg][language_msg] = [msg]
else:
messages[type_msg][language_msg].append(msg)
# Create CSV files (greeting, goodbye and error)
for type_msg in messages:
for language in messages[type_msg]:
with (open(f'assets/{client_name}/{type_msg}s/{language}.csv', mode='w', encoding='utf-8', newline='')
as outfile):
writer = csv.writer(outfile)
for msg in messages[type_msg][language]:
writer.writerow([msg])
# Create the audios (greeting, goodbye and error)
path_audios = f'assets/{client_name}/media/audio'
os.makedirs(path_audios, exist_ok=True)
for type_msg in messages:
for language in messages[type_msg]:
for i, msg in enumerate(messages[type_msg][language]):
full_path = f'{path_audios}/{type_msg}_{language}_{i}'
get_audio(msg, language, full_path)
# Group random audios by their language
random = dict()
for _, msg, language in random_table:
short_language = TRANSLATE_LANGUAGES[language]
if short_language not in random:
random[short_language] = [msg]
else:
random[short_language].append(msg)
# Create the random audios
for language in random:
for i, msg in enumerate(random[language]):
full_path = f'{path_audios}/random_{language}_{i}'
get_audio(msg, language, full_path)
# Save image
os.makedirs(f'assets/{client_name}/media/image', exist_ok=True)
image.save(f'assets/{client_name}/media/image/base.png')
# Upload files and audios to bucket in GCP
gcp.upload_folder(client_name, f'assets/{client_name}')
# Create videos for the generated audios and the waiting video (it is muted)
path_videos = f'assets/{client_name}/media/video'
os.makedirs(path_videos, exist_ok=True)
list_audios = os.listdir(path_audios) + ['waiting.wav']
for audio_file in list_audios:
name_file = audio_file.split('.')[0]
link_audio = gcp.get_link_file(client_name, 'audio', audio_file)
link_image = gcp.get_link_file(client_name, 'image', 'base.png')
try:
get_video(link_audio, link_image, f'{path_videos}/{name_file}')
except Exception as e:
gr.Error(f'Problema con la creación del video, hable con el administrador. Error: {e}')
logging.error(e)
return gr.update(value='ERROR!', interactive=False)
# Upload videos to GCP
gcp.upload_folder(client_name, path_videos)
# Set up vectorstore
vectors = []
for _, question, context in questions_table:
vector = {
"id": str(uuid.uuid4()),
"values": _get_embedding(question),
"metadata": {'Text': context},
}
vectors.append(vector)
INDEX.upsert(vectors=vectors, namespace=f'{client_name}-context')
# Change text in the button
return gr.update(value='Chatbot created!!!', interactive=False)
def save_prompts(client: str, context_prompt: str, prompts_table: list[list[str]]) -> None:
"""
Saves all the prompts (standalone and one for each language) and uploads them to Google Cloud Storage
:param client: name of the client
:param context_prompt: standalone prompt used to search into the vectorstore
:param prompts_table: table with the prompt of each language
:return: None
"""
client_name = client.lower().replace(' ', '-')
path_prompts = f'assets/{client_name}/prompts'
os.makedirs(path_prompts, exist_ok=True)
# Save standalone prompt. It is the same for all languages
with open(f'{path_prompts}/prompt_standalone_q.txt', mode='w', encoding='utf-8') as outfile:
outfile.write(context_prompt)
# Save the prompt of each language
for _, prompt, language in prompts_table:
language_prompt = TRANSLATE_LANGUAGES[language]
with open(f'{path_prompts}/prompt_{language_prompt}.txt', mode='w', encoding='utf-8') as outfile:
outfile.write(prompt)
gcp.upload_folder(client_name, path_prompts)
return
def generate_json(client: str, languages: list[str], max_num_questions: int, chatbot_name: str) -> gr.helpers:
"""
Creates a json file with the environment variables used in the API
:param client:
:param languages:
:param max_num_questions:
:param chatbot_name:
:return: gradio file with the value as the path of the json file
"""
# Format the name and the languages
short_languages = ''.join(f'{TRANSLATE_LANGUAGES[language]},' for language in languages)
short_languages = short_languages[:-1]
client_name = client.lower().replace(' ', '-')
json_object = json.dumps(
{
'CLIENT_NAME': client_name, 'MODEL_OPENAI': os.getenv('OPENAI_MODEL'), 'LANGUAGES': short_languages,
'MAX_NUM_QUESTIONS': max_num_questions, 'NUM_VECTORS_CONTEXT': 10, 'THRESHOLD_RECYCLE': 0.97,
'OPENAI_API_KEY': 'Check OpenAI for this', 'CHATBOT_NAME': chatbot_name, 'HAS_ROADMAP': 0,
'SAVE_ANSWERS': 0, 'USE_RECYCLED_DATA': 1
},
indent=4
)
path_json = f"assets/{client_name}/chatbot_variables.json"
with open(path_json, mode='w', encoding='utf-8') as outfile:
outfile.write(json_object)
return gr.update(value=path_json, label='Output file', interactive=True)
def _get_embedding(sentence: str) -> list[float]:
"""
Gets the embedding of a word/sentence/paragraph
:param sentence: input of the model
:return: list of floats representing the embedding
"""
response = OPENAI_CLIENT.embeddings.create(
input=sentence,
model='text-embedding-ada-002'
)
return response.data[0].embedding
|