Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load GPT-2 large model and tokenizer | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("gpt2-large") | |
model = AutoModelForCausalLM.from_pretrained("gpt2-large") | |
return tokenizer, model | |
tokenizer, model = load_model() | |
st.title("Blog Post Generator") | |
st.write("Generate a blog post for a given topic using GPT-2 Large.") | |
# User input for the blog post topic | |
topic = st.text_input("Enter the topic for your blog post:") | |
# Generate blog post button | |
if st.button("Generate Blog Post"): | |
if topic: | |
# Refine the input prompt to guide the model towards generating a blog post | |
input_text = f"Write a detailed blog post about {topic}. The post should cover various aspects of the topic and provide valuable information to the readers. Start with an introduction and follow with detailed paragraphs." | |
# Encode the input text | |
inputs = tokenizer.encode(input_text, return_tensors="pt") | |
# Generate the blog post using GPT-2 large | |
outputs = model.generate( | |
inputs, | |
max_length=500, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
early_stopping=True, | |
temperature=0.7, | |
top_p=0.9 | |
) | |
# Decode the generated text | |
blog_post = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.write("### Generated Blog Post:") | |
st.write(blog_post) | |
else: | |
st.write("Please enter a topic to generate a blog post.") | |