Commit
·
e9f59fc
1
Parent(s):
50673ca
Update model/retrain.py
Browse filesFixed the file paths to correctly point to `tmp` folder as the original paths are read-only
- model/retrain.py +34 -9
model/retrain.py
CHANGED
|
@@ -10,22 +10,47 @@ import hashlib
|
|
| 10 |
import datetime
|
| 11 |
import shutil
|
| 12 |
|
| 13 |
-
# Paths
|
| 14 |
-
BASE_DIR = Path(__file__).resolve().parent
|
| 15 |
-
DATA_DIR = BASE_DIR.parent / "data"
|
| 16 |
-
LOGS_DIR = BASE_DIR.parent / "logs"
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
COMBINED = DATA_DIR / "combined_dataset.csv"
|
| 19 |
SCRAPED = DATA_DIR / "scraped_real.csv"
|
| 20 |
GENERATED = DATA_DIR / "generated_fake.csv"
|
| 21 |
|
| 22 |
-
PROD_MODEL =
|
| 23 |
-
PROD_VECTORIZER =
|
| 24 |
|
| 25 |
-
CANDIDATE_MODEL =
|
| 26 |
-
CANDIDATE_VECTORIZER =
|
| 27 |
|
| 28 |
-
METADATA_PATH =
|
| 29 |
|
| 30 |
def hash_file(path: Path):
|
| 31 |
return hashlib.md5(path.read_bytes()).hexdigest()
|
|
|
|
| 10 |
import datetime
|
| 11 |
import shutil
|
| 12 |
|
| 13 |
+
# # Paths
|
| 14 |
+
# BASE_DIR = Path(__file__).resolve().parent
|
| 15 |
+
# DATA_DIR = BASE_DIR.parent / "data"
|
| 16 |
+
# LOGS_DIR = BASE_DIR.parent / "logs"
|
| 17 |
|
| 18 |
+
# COMBINED = DATA_DIR / "combined_dataset.csv"
|
| 19 |
+
# SCRAPED = DATA_DIR / "scraped_real.csv"
|
| 20 |
+
# GENERATED = DATA_DIR / "generated_fake.csv"
|
| 21 |
+
|
| 22 |
+
# PROD_MODEL = BASE_DIR / "model.pkl"
|
| 23 |
+
# PROD_VECTORIZER = BASE_DIR / "vectorizer.pkl"
|
| 24 |
+
|
| 25 |
+
# CANDIDATE_MODEL = BASE_DIR / "model_candidate.pkl"
|
| 26 |
+
# CANDIDATE_VECTORIZER = BASE_DIR / "vectorizer_candidate.pkl"
|
| 27 |
+
|
| 28 |
+
# METADATA_PATH = BASE_DIR / "metadata.json"
|
| 29 |
+
|
| 30 |
+
# Use /tmp as the writable directory in Docker/Hugging Face
|
| 31 |
+
BASE_DIR = Path("/tmp")
|
| 32 |
+
|
| 33 |
+
# Create writable subdirectories if they don’t exist
|
| 34 |
+
DATA_DIR = BASE_DIR / "data"
|
| 35 |
+
LOGS_DIR = BASE_DIR / "logs"
|
| 36 |
+
MODEL_DIR = BASE_DIR / "model"
|
| 37 |
+
|
| 38 |
+
DATA_DIR.mkdir(parents=True, exist_ok=True)
|
| 39 |
+
LOGS_DIR.mkdir(parents=True, exist_ok=True)
|
| 40 |
+
MODEL_DIR.mkdir(parents=True, exist_ok=True)
|
| 41 |
+
|
| 42 |
+
# File paths
|
| 43 |
COMBINED = DATA_DIR / "combined_dataset.csv"
|
| 44 |
SCRAPED = DATA_DIR / "scraped_real.csv"
|
| 45 |
GENERATED = DATA_DIR / "generated_fake.csv"
|
| 46 |
|
| 47 |
+
PROD_MODEL = MODEL_DIR / "model.pkl"
|
| 48 |
+
PROD_VECTORIZER = MODEL_DIR / "vectorizer.pkl"
|
| 49 |
|
| 50 |
+
CANDIDATE_MODEL = MODEL_DIR / "model_candidate.pkl"
|
| 51 |
+
CANDIDATE_VECTORIZER = MODEL_DIR / "vectorizer_candidate.pkl"
|
| 52 |
|
| 53 |
+
METADATA_PATH = MODEL_DIR / "metadata.json"
|
| 54 |
|
| 55 |
def hash_file(path: Path):
|
| 56 |
return hashlib.md5(path.read_bytes()).hexdigest()
|