Commit
Β·
e847844
1
Parent(s):
9666aeb
Update initialize_system.py
Browse files- initialize_system.py +297 -374
initialize_system.py
CHANGED
|
@@ -6,88 +6,109 @@ import json
|
|
| 6 |
from pathlib import Path
|
| 7 |
from datetime import datetime
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def log_step(message):
|
| 11 |
"""Log initialization steps"""
|
| 12 |
print(f"[{datetime.now().strftime('%H:%M:%S')}] {message}")
|
| 13 |
|
| 14 |
|
| 15 |
-
def check_model_exists():
|
| 16 |
-
"""Check if trained model already exists"""
|
| 17 |
-
model_files = [
|
| 18 |
-
Path("/tmp/pipeline.pkl"),
|
| 19 |
-
Path("/tmp/model.pkl"),
|
| 20 |
-
Path("/tmp/vectorizer.pkl"),
|
| 21 |
-
Path("/tmp/metadata.json")
|
| 22 |
-
]
|
| 23 |
-
|
| 24 |
-
existing_files = [f for f in model_files if f.exists()]
|
| 25 |
-
|
| 26 |
-
if len(existing_files) >= 2: # At least pipeline + metadata OR model + vectorizer
|
| 27 |
-
log_step(f"β
Found {len(existing_files)} existing model files")
|
| 28 |
-
return True, existing_files
|
| 29 |
-
else:
|
| 30 |
-
log_step(f"β Missing model files - only found {len(existing_files)}")
|
| 31 |
-
return False, existing_files
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def check_training_data_exists():
|
| 35 |
-
"""Check if training data is available"""
|
| 36 |
-
data_files = [
|
| 37 |
-
Path("/tmp/data/combined_dataset.csv"),
|
| 38 |
-
Path("/app/data/combined_dataset.csv"),
|
| 39 |
-
Path("/tmp/data/kaggle/Fake.csv"),
|
| 40 |
-
Path("/tmp/data/kaggle/True.csv")
|
| 41 |
-
]
|
| 42 |
-
|
| 43 |
-
existing_data = [f for f in data_files if f.exists()]
|
| 44 |
-
|
| 45 |
-
if existing_data:
|
| 46 |
-
log_step(f"β
Found training data: {[str(f) for f in existing_data]}")
|
| 47 |
-
return True, existing_data
|
| 48 |
-
else:
|
| 49 |
-
log_step("β No training data found")
|
| 50 |
-
return False, []
|
| 51 |
-
|
| 52 |
-
|
| 53 |
def create_directories():
|
| 54 |
"""Create necessary directories"""
|
| 55 |
log_step("Creating directory structure...")
|
| 56 |
|
|
|
|
| 57 |
directories = [
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
"/tmp/backups"
|
| 64 |
]
|
| 65 |
|
| 66 |
for dir_path in directories:
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
| 70 |
|
| 71 |
-
def copy_original_datasets():
|
| 72 |
-
"""Copy original datasets from /app to /tmp"""
|
| 73 |
-
log_step("Copying original datasets...")
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
copied_count = 0
|
| 85 |
-
for source,
|
| 86 |
-
if
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
else:
|
| 92 |
log_step(f"β οΈ Source file not found: {source}")
|
| 93 |
|
|
@@ -95,268 +116,184 @@ def copy_original_datasets():
|
|
| 95 |
|
| 96 |
|
| 97 |
def create_minimal_dataset():
|
| 98 |
-
"""Create a minimal dataset if
|
| 99 |
log_step("Creating minimal dataset...")
|
| 100 |
|
| 101 |
-
combined_path =
|
| 102 |
|
| 103 |
if combined_path.exists():
|
| 104 |
-
log_step("β
Combined dataset already exists")
|
| 105 |
return True
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
'URGENT: New study proves that drinking water causes immediate memory loss in 99% of population',
|
| 131 |
-
'BREAKING: Scientists discover that smartphones are actually mind control devices from aliens',
|
| 132 |
-
'EXCLUSIVE: Secret documents reveal that all elections have been predetermined by shadow organization',
|
| 133 |
-
'ALERT: Doctors confirm that eating vegetables makes people 500% more likely to develop rare diseases',
|
| 134 |
-
'LEAKED: Underground network of billionaires planning to replace all humans with artificial intelligence',
|
| 135 |
-
'CONSPIRACY: Major corporations hiding cure for aging to maintain population control and profits',
|
| 136 |
-
'REVEALED: Government admits that gravity is fake and Earth is actually moving upward constantly',
|
| 137 |
-
'WARNING: New technology allows complete thought reading through WiFi signals in your home',
|
| 138 |
-
'BOMBSHELL: Ancient aliens return to Earth disguised as tech executives to harvest human energy',
|
| 139 |
-
'UNCOVERED: All news media controlled by single person living in secret underground bunker',
|
| 140 |
-
'PROOF: Time travel already exists but only available to wealthy elite who control world events',
|
| 141 |
-
'SCANDAL: Pharmaceutical companies intentionally create diseases to sell more expensive treatments',
|
| 142 |
-
'EXPOSED: Education system designed to suppress human creativity and independent thinking abilities'
|
| 143 |
-
],
|
| 144 |
-
'label': [
|
| 145 |
-
# Real news labels (0)
|
| 146 |
-
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
| 147 |
-
# Fake news labels (1)
|
| 148 |
-
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
|
| 149 |
-
]
|
| 150 |
-
})
|
| 151 |
-
|
| 152 |
-
minimal_data.to_csv(combined_path, index=False)
|
| 153 |
-
log_step(f"β
Created enhanced minimal dataset with {len(minimal_data)} samples")
|
| 154 |
-
log_step(f" - Real news samples: {sum(minimal_data['label'] == 0)}")
|
| 155 |
-
log_step(f" - Fake news samples: {sum(minimal_data['label'] == 1)}")
|
| 156 |
-
return True
|
| 157 |
|
| 158 |
|
| 159 |
def run_initial_training():
|
| 160 |
-
"""Run
|
| 161 |
-
log_step("
|
| 162 |
|
| 163 |
try:
|
| 164 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 166 |
from sklearn.linear_model import LogisticRegression
|
| 167 |
-
from sklearn.
|
| 168 |
-
from sklearn.
|
| 169 |
from sklearn.pipeline import Pipeline
|
| 170 |
-
from sklearn.feature_selection import SelectKBest, chi2
|
| 171 |
-
from sklearn.preprocessing import FunctionTransformer
|
| 172 |
-
from sklearn.metrics import accuracy_score, f1_score, classification_report
|
| 173 |
import joblib
|
| 174 |
-
import re
|
| 175 |
-
|
| 176 |
-
# Text preprocessing function (same as in train.py)
|
| 177 |
-
def preprocess_text_function(texts):
|
| 178 |
-
def clean_single_text(text):
|
| 179 |
-
text = str(text)
|
| 180 |
-
text = re.sub(r'http\S+|www\S+|https\S+', '', text)
|
| 181 |
-
text = re.sub(r'\S+@\S+', '', text)
|
| 182 |
-
text = re.sub(r'[!]{2,}', '!', text)
|
| 183 |
-
text = re.sub(r'[?]{2,}', '?', text)
|
| 184 |
-
text = re.sub(r'[.]{3,}', '...', text)
|
| 185 |
-
text = re.sub(r'[^a-zA-Z\s.!?]', '', text)
|
| 186 |
-
text = re.sub(r'\s+', ' ', text)
|
| 187 |
-
return text.strip().lower()
|
| 188 |
-
|
| 189 |
-
processed = []
|
| 190 |
-
for text in texts:
|
| 191 |
-
processed.append(clean_single_text(text))
|
| 192 |
-
return processed
|
| 193 |
|
| 194 |
# Load dataset
|
| 195 |
-
dataset_path =
|
| 196 |
if not dataset_path.exists():
|
| 197 |
log_step("β No dataset available for training")
|
| 198 |
return False
|
| 199 |
|
| 200 |
df = pd.read_csv(dataset_path)
|
| 201 |
-
log_step(f"
|
| 202 |
|
| 203 |
-
#
|
| 204 |
-
df
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
log_step(f"π After cleaning: {len(df)} samples")
|
| 208 |
-
log_step(f"π Class distribution: {df['label'].value_counts().to_dict()}")
|
| 209 |
|
| 210 |
# Prepare data
|
| 211 |
X = df['text'].values
|
| 212 |
y = df['label'].values
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
# Train-test split
|
| 215 |
X_train, X_test, y_train, y_test = train_test_split(
|
| 216 |
-
X, y, test_size=0.2, random_state=42, stratify=y
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
log_step(f"π Data split: {len(X_train)} train, {len(X_test)} test")
|
| 220 |
-
|
| 221 |
-
# Create comprehensive pipeline
|
| 222 |
-
text_preprocessor = FunctionTransformer(
|
| 223 |
-
func=preprocess_text_function,
|
| 224 |
-
validate=False
|
| 225 |
)
|
| 226 |
|
| 227 |
-
|
| 228 |
-
max_features=5000,
|
| 229 |
-
min_df=1,
|
| 230 |
-
max_df=0.95,
|
| 231 |
-
ngram_range=(1, 2),
|
| 232 |
-
stop_words='english',
|
| 233 |
-
sublinear_tf=True,
|
| 234 |
-
norm='l2'
|
| 235 |
-
)
|
| 236 |
-
|
| 237 |
-
feature_selector = SelectKBest(
|
| 238 |
-
score_func=chi2,
|
| 239 |
-
k=2000
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
# Create pipeline with Logistic Regression
|
| 243 |
pipeline = Pipeline([
|
| 244 |
-
('
|
| 245 |
-
max_features=
|
| 246 |
-
min_df=2,
|
| 247 |
-
max_df=0.95,
|
| 248 |
-
ngram_range=(1, 2),
|
| 249 |
stop_words='english',
|
| 250 |
-
|
| 251 |
-
|
|
|
|
| 252 |
)),
|
| 253 |
('model', LogisticRegression(
|
| 254 |
-
max_iter=1000,
|
| 255 |
-
|
| 256 |
-
|
| 257 |
))
|
| 258 |
])
|
| 259 |
-
|
| 260 |
-
#
|
|
|
|
| 261 |
pipeline.fit(X_train, y_train)
|
| 262 |
-
|
| 263 |
# Evaluate
|
| 264 |
y_pred = pipeline.predict(X_test)
|
| 265 |
accuracy = accuracy_score(y_test, y_pred)
|
| 266 |
-
|
| 267 |
-
# Save artifacts
|
| 268 |
-
joblib.dump(pipeline, "/tmp/pipeline.pkl")
|
| 269 |
-
joblib.dump(pipeline.named_steps['model'], "/tmp/model.pkl")
|
| 270 |
-
joblib.dump(pipeline.named_steps['vectorize'], "/tmp/vectorizer.pkl")
|
| 271 |
-
|
| 272 |
-
log_step("π§ Training model with optimized pipeline...")
|
| 273 |
-
|
| 274 |
-
# Hyperparameter tuning for datasets with sufficient samples
|
| 275 |
-
if len(X_train) >= 20:
|
| 276 |
-
log_step("βοΈ Performing hyperparameter tuning...")
|
| 277 |
-
param_grid = {
|
| 278 |
-
'model__C': [0.1, 1, 10],
|
| 279 |
-
'model__penalty': ['l2']
|
| 280 |
-
}
|
| 281 |
-
|
| 282 |
-
cv_folds = max(2, min(3, len(X_train) // 10))
|
| 283 |
-
grid_search = GridSearchCV(
|
| 284 |
-
pipeline,
|
| 285 |
-
param_grid,
|
| 286 |
-
cv=StratifiedKFold(n_splits=cv_folds, shuffle=True, random_state=42),
|
| 287 |
-
scoring='f1_weighted',
|
| 288 |
-
n_jobs=1
|
| 289 |
-
)
|
| 290 |
-
|
| 291 |
-
grid_search.fit(X_train, y_train)
|
| 292 |
-
best_pipeline = grid_search.best_estimator_
|
| 293 |
-
|
| 294 |
-
log_step(f"β
Best parameters: {grid_search.best_params_}")
|
| 295 |
-
log_step(f"β
Best CV score: {grid_search.best_score_:.4f}")
|
| 296 |
-
else:
|
| 297 |
-
log_step("βοΈ Using simple training for small dataset...")
|
| 298 |
-
pipeline.fit(X_train, y_train)
|
| 299 |
-
best_pipeline = pipeline
|
| 300 |
-
|
| 301 |
-
# Evaluate model
|
| 302 |
-
y_pred = best_pipeline.predict(X_test)
|
| 303 |
-
accuracy = accuracy_score(y_test, y_pred)
|
| 304 |
f1 = f1_score(y_test, y_pred, average='weighted')
|
| 305 |
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
log_step(f"
|
| 309 |
-
|
| 310 |
-
# Save model artifacts
|
| 311 |
-
log_step("πΎ Saving model artifacts...")
|
| 312 |
|
| 313 |
-
# Save
|
| 314 |
-
joblib.dump(
|
| 315 |
-
|
|
|
|
| 316 |
|
| 317 |
-
# Save
|
| 318 |
-
joblib.dump(best_pipeline.named_steps['model'], "/tmp/model.pkl")
|
| 319 |
-
joblib.dump(best_pipeline.named_steps['vectorize'], "/tmp/vectorizer.pkl")
|
| 320 |
-
log_step("β
Saved individual model components")
|
| 321 |
-
|
| 322 |
-
# Generate comprehensive metadata
|
| 323 |
metadata = {
|
| 324 |
-
"model_version":
|
| 325 |
-
"model_type": "
|
| 326 |
-
"training_method": "initial_setup",
|
| 327 |
-
"dataset_size": len(df),
|
| 328 |
-
"train_size": len(X_train),
|
| 329 |
-
"test_size": len(X_test),
|
| 330 |
"test_accuracy": float(accuracy),
|
| 331 |
"test_f1": float(f1),
|
| 332 |
-
"
|
| 333 |
-
"
|
| 334 |
-
"class_distribution": df['label'].value_counts().to_dict(),
|
| 335 |
-
"training_config": {
|
| 336 |
-
"max_features": 5000,
|
| 337 |
-
"ngram_range": [1, 2],
|
| 338 |
-
"feature_selection_k": 2000,
|
| 339 |
-
"test_size": 0.2
|
| 340 |
-
},
|
| 341 |
"timestamp": datetime.now().isoformat(),
|
| 342 |
-
"
|
| 343 |
-
"
|
|
|
|
|
|
|
| 344 |
}
|
| 345 |
|
| 346 |
-
|
| 347 |
-
with open(
|
| 348 |
json.dump(metadata, f, indent=2)
|
| 349 |
|
| 350 |
-
log_step("β
|
| 351 |
-
log_step(f"
|
| 352 |
-
log_step(f"
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
| 354 |
return True
|
| 355 |
|
| 356 |
except Exception as e:
|
| 357 |
log_step(f"β Training failed: {str(e)}")
|
| 358 |
import traceback
|
| 359 |
-
log_step(f"
|
| 360 |
return False
|
| 361 |
|
| 362 |
|
|
@@ -368,25 +305,37 @@ def create_initial_logs():
|
|
| 368 |
# Activity log
|
| 369 |
activity_log = [{
|
| 370 |
"timestamp": datetime.now().strftime("%Y-%m-%d %I:%M %p"),
|
| 371 |
-
"event": "System initialized successfully
|
| 372 |
-
"level": "INFO"
|
|
|
|
| 373 |
}]
|
| 374 |
|
| 375 |
-
|
|
|
|
| 376 |
json.dump(activity_log, f, indent=2)
|
|
|
|
| 377 |
|
| 378 |
# Create empty monitoring logs
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
Path(log_dir).mkdir(parents=True, exist_ok=True)
|
| 382 |
-
|
| 383 |
-
with open("/tmp/logs/monitoring_log.json", 'w') as f:
|
| 384 |
json.dump([], f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
-
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
|
| 389 |
-
log_step("β
Initial log files created")
|
| 390 |
return True
|
| 391 |
|
| 392 |
except Exception as e:
|
|
@@ -394,100 +343,76 @@ def create_initial_logs():
|
|
| 394 |
return False
|
| 395 |
|
| 396 |
|
| 397 |
-
def
|
| 398 |
-
"""
|
| 399 |
-
log_step("
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
validation_checks.append(("Log Files", log_exists, "Activity log created"))
|
| 419 |
-
|
| 420 |
# Test model loading
|
| 421 |
-
model_loadable = False
|
| 422 |
try:
|
| 423 |
import joblib
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
except Exception as e:
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
all_passed = True
|
| 434 |
-
for check_name, passed, details in validation_checks:
|
| 435 |
-
status = "β
PASS" if passed else "β FAIL"
|
| 436 |
-
log_step(f" {status} {check_name}: {details}")
|
| 437 |
-
if not passed:
|
| 438 |
-
all_passed = False
|
| 439 |
-
|
| 440 |
-
return all_passed, validation_checks
|
| 441 |
|
| 442 |
|
| 443 |
def main():
|
| 444 |
-
"""Main initialization function
|
| 445 |
-
log_step("π Starting
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
if model_exists:
|
| 451 |
-
log_step("π― EXISTING INSTALLATION DETECTED")
|
| 452 |
-
log_step("π Found existing model files - skipping training")
|
| 453 |
-
|
| 454 |
-
# Load existing metadata to show info
|
| 455 |
-
try:
|
| 456 |
-
with open("/tmp/metadata.json", 'r') as f:
|
| 457 |
-
metadata = json.load(f)
|
| 458 |
-
|
| 459 |
-
log_step(f"π Existing Model Info:")
|
| 460 |
-
log_step(f" - Version: {metadata.get('model_version', 'Unknown')}")
|
| 461 |
-
log_step(f" - Accuracy: {metadata.get('test_accuracy', 'Unknown')}")
|
| 462 |
-
log_step(f" - F1 Score: {metadata.get('test_f1', 'Unknown')}")
|
| 463 |
-
log_step(f" - Created: {metadata.get('timestamp', 'Unknown')}")
|
| 464 |
-
|
| 465 |
-
except Exception as e:
|
| 466 |
-
log_step(f"β οΈ Could not read existing metadata: {e}")
|
| 467 |
-
|
| 468 |
-
else:
|
| 469 |
-
log_step("π FIRST-TIME INSTALLATION DETECTED")
|
| 470 |
-
log_step("π§ No existing model found - will train new model")
|
| 471 |
|
| 472 |
-
# Run initialization steps
|
| 473 |
steps = [
|
| 474 |
("Directory Creation", create_directories),
|
| 475 |
-
("Dataset Copy",
|
| 476 |
-
("Dataset
|
| 477 |
-
("
|
|
|
|
|
|
|
| 478 |
]
|
| 479 |
|
| 480 |
-
# Add training step only if model doesn't exist
|
| 481 |
-
if not model_exists:
|
| 482 |
-
steps.insert(-1, ("π€ Model Training", run_initial_training))
|
| 483 |
-
|
| 484 |
failed_steps = []
|
|
|
|
| 485 |
|
| 486 |
for step_name, step_function in steps:
|
| 487 |
try:
|
| 488 |
-
log_step(f"
|
| 489 |
if step_function():
|
| 490 |
log_step(f"β
{step_name} completed")
|
|
|
|
| 491 |
else:
|
| 492 |
log_step(f"β {step_name} failed")
|
| 493 |
failed_steps.append(step_name)
|
|
@@ -495,35 +420,33 @@ def main():
|
|
| 495 |
log_step(f"β {step_name} failed: {str(e)}")
|
| 496 |
failed_steps.append(step_name)
|
| 497 |
|
| 498 |
-
# Final validation
|
| 499 |
-
log_step("π Running final system validation...")
|
| 500 |
-
validation_passed, validation_results = validate_installation()
|
| 501 |
-
|
| 502 |
# Summary
|
| 503 |
-
log_step("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
if failed_steps:
|
| 505 |
-
log_step(f"
|
| 506 |
-
log_step(f"
|
| 507 |
else:
|
| 508 |
log_step("π System initialization completed successfully!")
|
| 509 |
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
log_step("π You can now start making predictions!")
|
| 517 |
-
else:
|
| 518 |
-
log_step("π EXISTING MODEL VALIDATED AND READY")
|
| 519 |
-
log_step("π System restored from previous installation!")
|
| 520 |
-
|
| 521 |
-
else:
|
| 522 |
-
log_step("β Some validation checks failed")
|
| 523 |
-
log_step("π§ Manual intervention may be required")
|
| 524 |
|
| 525 |
-
log_step("
|
|
|
|
|
|
|
| 526 |
|
| 527 |
|
| 528 |
if __name__ == "__main__":
|
| 529 |
-
main()
|
|
|
|
|
|
|
|
|
| 6 |
from pathlib import Path
|
| 7 |
from datetime import datetime
|
| 8 |
|
| 9 |
+
# Import the new path manager
|
| 10 |
+
try:
|
| 11 |
+
from path_config import path_manager
|
| 12 |
+
except ImportError:
|
| 13 |
+
# Add current directory to path
|
| 14 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 15 |
+
from path_config import path_manager
|
| 16 |
+
|
| 17 |
|
| 18 |
def log_step(message):
|
| 19 |
"""Log initialization steps"""
|
| 20 |
print(f"[{datetime.now().strftime('%H:%M:%S')}] {message}")
|
| 21 |
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def create_directories():
|
| 24 |
"""Create necessary directories"""
|
| 25 |
log_step("Creating directory structure...")
|
| 26 |
|
| 27 |
+
# Directories are already created by path_manager initialization
|
| 28 |
directories = [
|
| 29 |
+
path_manager.get_data_path(),
|
| 30 |
+
path_manager.get_model_path(),
|
| 31 |
+
path_manager.get_logs_path(),
|
| 32 |
+
path_manager.get_cache_path(),
|
| 33 |
+
path_manager.get_temp_path()
|
|
|
|
| 34 |
]
|
| 35 |
|
| 36 |
for dir_path in directories:
|
| 37 |
+
if dir_path.exists():
|
| 38 |
+
log_step(f"β
Directory exists: {dir_path}")
|
| 39 |
+
else:
|
| 40 |
+
try:
|
| 41 |
+
dir_path.mkdir(parents=True, exist_ok=True)
|
| 42 |
+
log_step(f"β
Created directory: {dir_path}")
|
| 43 |
+
except Exception as e:
|
| 44 |
+
log_step(f"β οΈ Failed to create {dir_path}: {e}")
|
| 45 |
+
return False
|
| 46 |
+
|
| 47 |
+
# Create kaggle subdirectory
|
| 48 |
+
kaggle_dir = path_manager.get_data_path('kaggle')
|
| 49 |
+
kaggle_dir.mkdir(parents=True, exist_ok=True)
|
| 50 |
+
log_step(f"β
Created kaggle directory: {kaggle_dir}")
|
| 51 |
|
| 52 |
+
return True
|
| 53 |
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
def check_existing_datasets():
|
| 56 |
+
"""Check for existing datasets in the project structure"""
|
| 57 |
+
log_step("Checking for existing datasets...")
|
| 58 |
+
|
| 59 |
+
# Check for datasets in the current project structure
|
| 60 |
+
base_dir = path_manager.base_paths['base']
|
| 61 |
+
|
| 62 |
+
# Possible source locations
|
| 63 |
+
source_locations = [
|
| 64 |
+
base_dir / "data" / "kaggle" / "Fake.csv",
|
| 65 |
+
base_dir / "data" / "kaggle" / "True.csv",
|
| 66 |
+
base_dir / "data" / "combined_dataset.csv"
|
| 67 |
]
|
| 68 |
+
|
| 69 |
+
found_files = []
|
| 70 |
+
for source_file in source_locations:
|
| 71 |
+
if source_file.exists():
|
| 72 |
+
found_files.append(source_file)
|
| 73 |
+
log_step(f"β
Found existing dataset: {source_file}")
|
| 74 |
+
|
| 75 |
+
return found_files
|
| 76 |
+
|
| 77 |
|
| 78 |
+
def copy_existing_datasets():
|
| 79 |
+
"""Copy existing datasets if they're not in the target location"""
|
| 80 |
+
log_step("Copying existing datasets to target locations...")
|
| 81 |
+
|
| 82 |
+
base_dir = path_manager.base_paths['base']
|
| 83 |
+
target_data_dir = path_manager.get_data_path()
|
| 84 |
+
|
| 85 |
+
# Define source-target pairs
|
| 86 |
+
copy_operations = [
|
| 87 |
+
(base_dir / "data" / "kaggle" / "Fake.csv", target_data_dir / "kaggle" / "Fake.csv"),
|
| 88 |
+
(base_dir / "data" / "kaggle" / "True.csv", target_data_dir / "kaggle" / "True.csv"),
|
| 89 |
+
(base_dir / "data" / "combined_dataset.csv", target_data_dir / "combined_dataset.csv")
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
copied_count = 0
|
| 93 |
+
for source, target in copy_operations:
|
| 94 |
+
# Skip if source and target are the same (already in correct location)
|
| 95 |
+
if source == target:
|
| 96 |
+
if source.exists():
|
| 97 |
+
log_step(f"β
Dataset already in correct location: {target}")
|
| 98 |
+
copied_count += 1
|
| 99 |
+
continue
|
| 100 |
+
|
| 101 |
+
if source.exists():
|
| 102 |
+
try:
|
| 103 |
+
# Ensure target directory exists
|
| 104 |
+
target.parent.mkdir(parents=True, exist_ok=True)
|
| 105 |
+
|
| 106 |
+
# Copy file
|
| 107 |
+
shutil.copy2(source, target)
|
| 108 |
+
log_step(f"β
Copied {source} β {target}")
|
| 109 |
+
copied_count += 1
|
| 110 |
+
except Exception as e:
|
| 111 |
+
log_step(f"β οΈ Failed to copy {source}: {e}")
|
| 112 |
else:
|
| 113 |
log_step(f"β οΈ Source file not found: {source}")
|
| 114 |
|
|
|
|
| 116 |
|
| 117 |
|
| 118 |
def create_minimal_dataset():
|
| 119 |
+
"""Create a minimal dataset if no existing dataset is found"""
|
| 120 |
log_step("Creating minimal dataset...")
|
| 121 |
|
| 122 |
+
combined_path = path_manager.get_combined_dataset_path()
|
| 123 |
|
| 124 |
if combined_path.exists():
|
| 125 |
+
log_step(f"β
Combined dataset already exists: {combined_path}")
|
| 126 |
return True
|
| 127 |
|
| 128 |
+
try:
|
| 129 |
+
# Create minimal training data with diverse examples
|
| 130 |
+
minimal_data = pd.DataFrame({
|
| 131 |
+
'text': [
|
| 132 |
+
# Real news examples
|
| 133 |
+
'Scientists at MIT have developed a new renewable energy technology that could revolutionize solar power generation.',
|
| 134 |
+
'The Federal Reserve announced interest rate decisions following their latest economic review meeting.',
|
| 135 |
+
'Local authorities report significant improvements in air quality following new environmental regulations.',
|
| 136 |
+
'Research published in Nature journal reveals new insights about climate change adaptation strategies.',
|
| 137 |
+
'Economic indicators show steady growth in the manufacturing sector across multiple regions.',
|
| 138 |
+
'Healthcare officials recommend updated vaccination schedules based on latest medical research findings.',
|
| 139 |
+
'Transportation department announces infrastructure improvements for major highway systems nationwide.',
|
| 140 |
+
'Educational institutions implement new digital learning platforms to enhance student engagement.',
|
| 141 |
+
'Agricultural experts develop drought-resistant crop varieties to improve food security globally.',
|
| 142 |
+
'Technology companies invest heavily in cybersecurity measures to protect user data privacy.',
|
| 143 |
+
|
| 144 |
+
# Fake news examples
|
| 145 |
+
'SHOCKING: Government officials secretly planning to control population through mind control technology.',
|
| 146 |
+
'EXCLUSIVE: Celebrities caught in massive alien communication scandal that mainstream media won\'t report.',
|
| 147 |
+
'BREAKING: Scientists discover time travel but government hiding the truth from public knowledge.',
|
| 148 |
+
'EXPOSED: Pharmaceutical companies deliberately spreading diseases to increase their massive profits.',
|
| 149 |
+
'URGENT: Social media platforms using secret algorithms to brainwash users into political compliance.',
|
| 150 |
+
'LEAKED: Banking system about to collapse completely, insiders reveal financial catastrophe coming soon.',
|
| 151 |
+
'CONFIRMED: Weather modification technology being used to create artificial natural disasters worldwide.',
|
| 152 |
+
'REVEALED: Food companies adding dangerous chemicals that cause instant health problems and addiction.',
|
| 153 |
+
'CONSPIRACY: Educational system designed to suppress critical thinking and create obedient citizens.',
|
| 154 |
+
'TRUTH: Technology giants working with foreign powers to undermine national sovereignty completely.'
|
| 155 |
+
],
|
| 156 |
+
'label': [
|
| 157 |
+
# Real news labels (0)
|
| 158 |
+
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
| 159 |
+
# Fake news labels (1)
|
| 160 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
|
| 161 |
+
]
|
| 162 |
+
})
|
| 163 |
+
|
| 164 |
+
# Save the dataset
|
| 165 |
+
minimal_data.to_csv(combined_path, index=False)
|
| 166 |
+
log_step(f"β
Created minimal dataset with {len(minimal_data)} samples at {combined_path}")
|
| 167 |
+
|
| 168 |
+
# Verify the file was created correctly
|
| 169 |
+
if combined_path.exists():
|
| 170 |
+
df_check = pd.read_csv(combined_path)
|
| 171 |
+
log_step(f"β
Verified dataset: {len(df_check)} rows loaded successfully")
|
| 172 |
+
return True
|
| 173 |
+
else:
|
| 174 |
+
log_step("β Failed to verify created dataset")
|
| 175 |
+
return False
|
| 176 |
|
| 177 |
+
except Exception as e:
|
| 178 |
+
log_step(f"β Failed to create minimal dataset: {str(e)}")
|
| 179 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
|
| 182 |
def run_initial_training():
|
| 183 |
+
"""Run basic model training"""
|
| 184 |
+
log_step("Starting initial model training...")
|
| 185 |
|
| 186 |
try:
|
| 187 |
+
# Check if model already exists
|
| 188 |
+
model_path = path_manager.get_model_file_path()
|
| 189 |
+
vectorizer_path = path_manager.get_vectorizer_path()
|
| 190 |
+
pipeline_path = path_manager.get_pipeline_path()
|
| 191 |
+
|
| 192 |
+
if pipeline_path.exists() or (model_path.exists() and vectorizer_path.exists()):
|
| 193 |
+
log_step("β
Model files already exist")
|
| 194 |
+
return True
|
| 195 |
+
|
| 196 |
+
# Import required libraries
|
| 197 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 198 |
from sklearn.linear_model import LogisticRegression
|
| 199 |
+
from sklearn.model_selection import train_test_split
|
| 200 |
+
from sklearn.metrics import accuracy_score, f1_score
|
| 201 |
from sklearn.pipeline import Pipeline
|
|
|
|
|
|
|
|
|
|
| 202 |
import joblib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
# Load dataset
|
| 205 |
+
dataset_path = path_manager.get_combined_dataset_path()
|
| 206 |
if not dataset_path.exists():
|
| 207 |
log_step("β No dataset available for training")
|
| 208 |
return False
|
| 209 |
|
| 210 |
df = pd.read_csv(dataset_path)
|
| 211 |
+
log_step(f"Loaded dataset with {len(df)} samples")
|
| 212 |
|
| 213 |
+
# Validate dataset
|
| 214 |
+
if len(df) < 10:
|
| 215 |
+
log_step("β Dataset too small for training")
|
| 216 |
+
return False
|
|
|
|
|
|
|
| 217 |
|
| 218 |
# Prepare data
|
| 219 |
X = df['text'].values
|
| 220 |
y = df['label'].values
|
| 221 |
|
| 222 |
+
# Check class distribution
|
| 223 |
+
class_counts = pd.Series(y).value_counts()
|
| 224 |
+
log_step(f"Class distribution: {class_counts.to_dict()}")
|
| 225 |
+
|
| 226 |
# Train-test split
|
| 227 |
X_train, X_test, y_train, y_test = train_test_split(
|
| 228 |
+
X, y, test_size=0.2, random_state=42, stratify=y if len(class_counts) > 1 else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
)
|
| 230 |
|
| 231 |
+
# Create pipeline with preprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
pipeline = Pipeline([
|
| 233 |
+
('vectorizer', TfidfVectorizer(
|
| 234 |
+
max_features=5000,
|
|
|
|
|
|
|
|
|
|
| 235 |
stop_words='english',
|
| 236 |
+
ngram_range=(1, 2),
|
| 237 |
+
min_df=1,
|
| 238 |
+
max_df=0.95
|
| 239 |
)),
|
| 240 |
('model', LogisticRegression(
|
| 241 |
+
max_iter=1000,
|
| 242 |
+
random_state=42,
|
| 243 |
+
class_weight='balanced'
|
| 244 |
))
|
| 245 |
])
|
| 246 |
+
|
| 247 |
+
# Train model
|
| 248 |
+
log_step("Training model...")
|
| 249 |
pipeline.fit(X_train, y_train)
|
| 250 |
+
|
| 251 |
# Evaluate
|
| 252 |
y_pred = pipeline.predict(X_test)
|
| 253 |
accuracy = accuracy_score(y_test, y_pred)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
f1 = f1_score(y_test, y_pred, average='weighted')
|
| 255 |
|
| 256 |
+
# Save complete pipeline
|
| 257 |
+
joblib.dump(pipeline, pipeline_path)
|
| 258 |
+
log_step(f"β
Saved pipeline to {pipeline_path}")
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
+
# Save individual components for backward compatibility
|
| 261 |
+
joblib.dump(pipeline.named_steps['model'], model_path)
|
| 262 |
+
joblib.dump(pipeline.named_steps['vectorizer'], vectorizer_path)
|
| 263 |
+
log_step(f"β
Saved individual components")
|
| 264 |
|
| 265 |
+
# Save metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
metadata = {
|
| 267 |
+
"model_version": "v1.0_init",
|
| 268 |
+
"model_type": "logistic_regression_pipeline",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
"test_accuracy": float(accuracy),
|
| 270 |
"test_f1": float(f1),
|
| 271 |
+
"train_size": len(X_train),
|
| 272 |
+
"test_size": len(X_test),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
"timestamp": datetime.now().isoformat(),
|
| 274 |
+
"training_method": "initialization",
|
| 275 |
+
"environment": path_manager.environment,
|
| 276 |
+
"data_path": str(dataset_path),
|
| 277 |
+
"class_distribution": class_counts.to_dict()
|
| 278 |
}
|
| 279 |
|
| 280 |
+
metadata_path = path_manager.get_metadata_path()
|
| 281 |
+
with open(metadata_path, 'w') as f:
|
| 282 |
json.dump(metadata, f, indent=2)
|
| 283 |
|
| 284 |
+
log_step(f"β
Training completed successfully")
|
| 285 |
+
log_step(f" Accuracy: {accuracy:.4f}")
|
| 286 |
+
log_step(f" F1 Score: {f1:.4f}")
|
| 287 |
+
log_step(f" Model saved to: {model_path}")
|
| 288 |
+
log_step(f" Vectorizer saved to: {vectorizer_path}")
|
| 289 |
+
log_step(f" Pipeline saved to: {pipeline_path}")
|
| 290 |
+
|
| 291 |
return True
|
| 292 |
|
| 293 |
except Exception as e:
|
| 294 |
log_step(f"β Training failed: {str(e)}")
|
| 295 |
import traceback
|
| 296 |
+
log_step(f"β Traceback: {traceback.format_exc()}")
|
| 297 |
return False
|
| 298 |
|
| 299 |
|
|
|
|
| 305 |
# Activity log
|
| 306 |
activity_log = [{
|
| 307 |
"timestamp": datetime.now().strftime("%Y-%m-%d %I:%M %p"),
|
| 308 |
+
"event": "System initialized successfully",
|
| 309 |
+
"level": "INFO",
|
| 310 |
+
"environment": path_manager.environment
|
| 311 |
}]
|
| 312 |
|
| 313 |
+
activity_log_path = path_manager.get_activity_log_path()
|
| 314 |
+
with open(activity_log_path, 'w') as f:
|
| 315 |
json.dump(activity_log, f, indent=2)
|
| 316 |
+
log_step(f"β
Created activity log: {activity_log_path}")
|
| 317 |
|
| 318 |
# Create empty monitoring logs
|
| 319 |
+
monitoring_log_path = path_manager.get_logs_path("monitoring_log.json")
|
| 320 |
+
with open(monitoring_log_path, 'w') as f:
|
|
|
|
|
|
|
|
|
|
| 321 |
json.dump([], f)
|
| 322 |
+
log_step(f"β
Created monitoring log: {monitoring_log_path}")
|
| 323 |
+
|
| 324 |
+
# Create other necessary log files
|
| 325 |
+
log_files = [
|
| 326 |
+
"drift_history.json",
|
| 327 |
+
"drift_alerts.json",
|
| 328 |
+
"scheduler_execution.json",
|
| 329 |
+
"scheduler_errors.json"
|
| 330 |
+
]
|
| 331 |
|
| 332 |
+
for log_file in log_files:
|
| 333 |
+
log_path = path_manager.get_logs_path(log_file)
|
| 334 |
+
if not log_path.exists():
|
| 335 |
+
with open(log_path, 'w') as f:
|
| 336 |
+
json.dump([], f)
|
| 337 |
+
log_step(f"β
Created {log_file}")
|
| 338 |
|
|
|
|
| 339 |
return True
|
| 340 |
|
| 341 |
except Exception as e:
|
|
|
|
| 343 |
return False
|
| 344 |
|
| 345 |
|
| 346 |
+
def verify_system():
|
| 347 |
+
"""Verify that the system is properly initialized"""
|
| 348 |
+
log_step("Verifying system initialization...")
|
| 349 |
+
|
| 350 |
+
# Check critical files
|
| 351 |
+
critical_files = [
|
| 352 |
+
(path_manager.get_combined_dataset_path(), "Combined dataset"),
|
| 353 |
+
(path_manager.get_model_file_path(), "Model file"),
|
| 354 |
+
(path_manager.get_vectorizer_path(), "Vectorizer file"),
|
| 355 |
+
(path_manager.get_metadata_path(), "Metadata file"),
|
| 356 |
+
(path_manager.get_activity_log_path(), "Activity log")
|
| 357 |
+
]
|
| 358 |
+
|
| 359 |
+
all_good = True
|
| 360 |
+
for file_path, description in critical_files:
|
| 361 |
+
if file_path.exists():
|
| 362 |
+
log_step(f"β
{description}: {file_path}")
|
| 363 |
+
else:
|
| 364 |
+
log_step(f"β Missing {description}: {file_path}")
|
| 365 |
+
all_good = False
|
| 366 |
+
|
|
|
|
|
|
|
| 367 |
# Test model loading
|
|
|
|
| 368 |
try:
|
| 369 |
import joblib
|
| 370 |
+
pipeline_path = path_manager.get_pipeline_path()
|
| 371 |
+
if pipeline_path.exists():
|
| 372 |
+
pipeline = joblib.load(pipeline_path)
|
| 373 |
+
test_pred = pipeline.predict(["This is a test text"])
|
| 374 |
+
log_step(f"β
Model test prediction successful: {test_pred}")
|
| 375 |
+
else:
|
| 376 |
+
model_path = path_manager.get_model_file_path()
|
| 377 |
+
vectorizer_path = path_manager.get_vectorizer_path()
|
| 378 |
+
model = joblib.load(model_path)
|
| 379 |
+
vectorizer = joblib.load(vectorizer_path)
|
| 380 |
+
test_text_vec = vectorizer.transform(["This is a test text"])
|
| 381 |
+
test_pred = model.predict(test_text_vec)
|
| 382 |
+
log_step(f"β
Model component test prediction successful: {test_pred}")
|
| 383 |
except Exception as e:
|
| 384 |
+
log_step(f"β Model test failed: {e}")
|
| 385 |
+
all_good = False
|
| 386 |
+
|
| 387 |
+
return all_good
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
|
| 389 |
|
| 390 |
def main():
|
| 391 |
+
"""Main initialization function"""
|
| 392 |
+
log_step("π Starting system initialization...")
|
| 393 |
+
log_step(f"π Environment: {path_manager.environment}")
|
| 394 |
+
log_step(f"π Base directory: {path_manager.base_paths['base']}")
|
| 395 |
+
log_step(f"π Data directory: {path_manager.base_paths['data']}")
|
| 396 |
+
log_step(f"π€ Model directory: {path_manager.base_paths['model']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
|
|
|
| 398 |
steps = [
|
| 399 |
("Directory Creation", create_directories),
|
| 400 |
+
("Existing Dataset Copy", copy_existing_datasets),
|
| 401 |
+
("Minimal Dataset Creation", create_minimal_dataset),
|
| 402 |
+
("Model Training", run_initial_training),
|
| 403 |
+
("Log File Creation", create_initial_logs),
|
| 404 |
+
("System Verification", verify_system)
|
| 405 |
]
|
| 406 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
failed_steps = []
|
| 408 |
+
completed_steps = []
|
| 409 |
|
| 410 |
for step_name, step_function in steps:
|
| 411 |
try:
|
| 412 |
+
log_step(f"π Starting: {step_name}")
|
| 413 |
if step_function():
|
| 414 |
log_step(f"β
{step_name} completed")
|
| 415 |
+
completed_steps.append(step_name)
|
| 416 |
else:
|
| 417 |
log_step(f"β {step_name} failed")
|
| 418 |
failed_steps.append(step_name)
|
|
|
|
| 420 |
log_step(f"β {step_name} failed: {str(e)}")
|
| 421 |
failed_steps.append(step_name)
|
| 422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
# Summary
|
| 424 |
+
log_step(f"\nπ Initialization Summary:")
|
| 425 |
+
log_step(f" β
Completed: {len(completed_steps)}/{len(steps)} steps")
|
| 426 |
+
log_step(f" β Failed: {len(failed_steps)}/{len(steps)} steps")
|
| 427 |
+
|
| 428 |
+
if completed_steps:
|
| 429 |
+
log_step(f" Completed steps: {', '.join(completed_steps)}")
|
| 430 |
+
|
| 431 |
if failed_steps:
|
| 432 |
+
log_step(f" Failed steps: {', '.join(failed_steps)}")
|
| 433 |
+
log_step(f"β οΈ Initialization completed with {len(failed_steps)} failed steps")
|
| 434 |
else:
|
| 435 |
log_step("π System initialization completed successfully!")
|
| 436 |
|
| 437 |
+
# Environment info
|
| 438 |
+
log_step(f"\nπ Environment Information:")
|
| 439 |
+
env_info = path_manager.get_environment_info()
|
| 440 |
+
log_step(f" Environment: {env_info['environment']}")
|
| 441 |
+
log_step(f" Available datasets: {sum(env_info['available_datasets'].values())}")
|
| 442 |
+
log_step(f" Available models: {sum(env_info['available_models'].values())}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
|
| 444 |
+
log_step("\nπ― System ready for use!")
|
| 445 |
+
|
| 446 |
+
return len(failed_steps) == 0
|
| 447 |
|
| 448 |
|
| 449 |
if __name__ == "__main__":
|
| 450 |
+
success = main()
|
| 451 |
+
if not success:
|
| 452 |
+
sys.exit(1)
|