Commit
·
dff1572
1
Parent(s):
ed2e413
Update features/feature_engineer.py
Browse files- features/feature_engineer.py +254 -322
features/feature_engineer.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
#
|
|
|
|
| 2 |
|
| 3 |
import json
|
| 4 |
import joblib
|
|
@@ -19,16 +20,11 @@ from sklearn.preprocessing import StandardScaler, FunctionTransformer
|
|
| 19 |
import warnings
|
| 20 |
warnings.filterwarnings('ignore')
|
| 21 |
|
| 22 |
-
# Import feature analyzers
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
from features.linguistic_analyzer import LinguisticAnalyzer
|
| 28 |
-
FEATURE_ANALYZERS_AVAILABLE = True
|
| 29 |
-
except ImportError:
|
| 30 |
-
FEATURE_ANALYZERS_AVAILABLE = False
|
| 31 |
-
logging.warning("Advanced feature analyzers not available - using basic features only")
|
| 32 |
|
| 33 |
# Configure logging
|
| 34 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -37,7 +33,8 @@ logger = logging.getLogger(__name__)
|
|
| 37 |
|
| 38 |
class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
| 39 |
"""
|
| 40 |
-
|
|
|
|
| 41 |
"""
|
| 42 |
|
| 43 |
def __init__(self,
|
|
@@ -52,39 +49,33 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 52 |
max_df: float = 0.95):
|
| 53 |
"""
|
| 54 |
Initialize the advanced feature engineering pipeline.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
"""
|
| 56 |
-
self.enable_sentiment = enable_sentiment
|
| 57 |
-
self.enable_readability = enable_readability
|
| 58 |
-
self.enable_entities = enable_entities
|
| 59 |
-
self.enable_linguistic = enable_linguistic
|
| 60 |
self.feature_selection_k = feature_selection_k
|
| 61 |
self.tfidf_max_features = tfidf_max_features
|
| 62 |
self.ngram_range = ngram_range
|
| 63 |
self.min_df = min_df
|
| 64 |
self.max_df = max_df
|
| 65 |
|
| 66 |
-
# Initialize feature extractors
|
| 67 |
-
self.sentiment_analyzer = None
|
| 68 |
-
self.readability_analyzer = None
|
| 69 |
-
self.entity_analyzer = None
|
| 70 |
-
self.linguistic_analyzer = None
|
| 71 |
-
|
| 72 |
-
if FEATURE_ANALYZERS_AVAILABLE:
|
| 73 |
-
try:
|
| 74 |
-
if self.enable_sentiment:
|
| 75 |
-
self.sentiment_analyzer = SentimentAnalyzer()
|
| 76 |
-
if self.enable_readability:
|
| 77 |
-
self.readability_analyzer = ReadabilityAnalyzer()
|
| 78 |
-
if self.enable_entities:
|
| 79 |
-
self.entity_analyzer = EntityAnalyzer()
|
| 80 |
-
if self.enable_linguistic:
|
| 81 |
-
self.linguistic_analyzer = LinguisticAnalyzer()
|
| 82 |
-
except Exception as e:
|
| 83 |
-
logger.warning(f"Failed to initialize feature analyzers: {e}")
|
| 84 |
-
self.sentiment_analyzer = None
|
| 85 |
-
self.readability_analyzer = None
|
| 86 |
-
self.entity_analyzer = None
|
| 87 |
-
self.linguistic_analyzer = None
|
| 88 |
|
| 89 |
# Initialize TF-IDF components
|
| 90 |
self.tfidf_vectorizer = None
|
|
@@ -98,7 +89,11 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 98 |
|
| 99 |
def fit(self, X, y=None):
|
| 100 |
"""
|
| 101 |
-
Fit the feature engineering pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
"""
|
| 103 |
logger.info("Fitting advanced feature engineering pipeline...")
|
| 104 |
|
|
@@ -112,61 +107,41 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 112 |
if len(X) == 0:
|
| 113 |
raise ValueError("Cannot fit on empty data")
|
| 114 |
|
| 115 |
-
# Initialize TF-IDF vectorizer
|
| 116 |
-
actual_max_features = min(self.tfidf_max_features, len(X) * 10)
|
| 117 |
-
|
| 118 |
self.tfidf_vectorizer = TfidfVectorizer(
|
| 119 |
-
max_features=
|
| 120 |
ngram_range=self.ngram_range,
|
| 121 |
-
min_df=
|
| 122 |
max_df=self.max_df,
|
| 123 |
stop_words='english',
|
| 124 |
sublinear_tf=True,
|
| 125 |
norm='l2',
|
| 126 |
-
lowercase=True
|
| 127 |
-
token_pattern=r'\b[a-zA-Z][a-zA-Z]+\b' # Fix regex pattern
|
| 128 |
)
|
| 129 |
|
| 130 |
# Fit TF-IDF on text data
|
| 131 |
logger.info("Fitting TF-IDF vectorizer...")
|
| 132 |
-
|
| 133 |
-
tfidf_features = self.tfidf_vectorizer.fit_transform(X)
|
| 134 |
-
logger.info(f"TF-IDF features shape: {tfidf_features.shape}")
|
| 135 |
-
except Exception as e:
|
| 136 |
-
logger.error(f"TF-IDF fitting failed: {e}")
|
| 137 |
-
# Fallback to very basic TF-IDF
|
| 138 |
-
self.tfidf_vectorizer = TfidfVectorizer(
|
| 139 |
-
max_features=min(1000, len(X) * 5),
|
| 140 |
-
stop_words='english',
|
| 141 |
-
lowercase=True
|
| 142 |
-
)
|
| 143 |
-
tfidf_features = self.tfidf_vectorizer.fit_transform(X)
|
| 144 |
-
logger.info(f"Fallback TF-IDF features shape: {tfidf_features.shape}")
|
| 145 |
|
| 146 |
-
# Extract additional features
|
| 147 |
additional_features = self._extract_additional_features(X, fit=True)
|
| 148 |
|
| 149 |
# Combine all features
|
| 150 |
if additional_features.shape[1] > 0:
|
| 151 |
-
|
| 152 |
-
all_features = hstack([tfidf_features, additional_features])
|
| 153 |
-
except Exception as e:
|
| 154 |
-
logger.warning(f"Failed to combine features, using TF-IDF only: {e}")
|
| 155 |
-
all_features = tfidf_features
|
| 156 |
-
additional_features = np.empty((len(X), 0))
|
| 157 |
else:
|
| 158 |
all_features = tfidf_features
|
| 159 |
|
| 160 |
logger.info(f"Total features before selection: {all_features.shape[1]}")
|
| 161 |
|
| 162 |
-
# Feature selection
|
| 163 |
if y is not None and self.feature_selection_k < all_features.shape[1]:
|
| 164 |
-
|
| 165 |
-
logger.info(f"Performing feature selection (k={actual_k})...")
|
| 166 |
|
|
|
|
| 167 |
self.feature_selector = SelectKBest(
|
| 168 |
score_func=chi2,
|
| 169 |
-
k=
|
| 170 |
)
|
| 171 |
|
| 172 |
# Ensure non-negative features for chi2
|
|
@@ -178,30 +153,22 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 178 |
# Make features non-negative for chi2
|
| 179 |
features_dense = np.maximum(features_dense, 0)
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
except Exception as e:
|
| 186 |
-
logger.warning(f"Feature selection failed: {e}, using all features")
|
| 187 |
-
self.feature_selector = None
|
| 188 |
-
selected_features = all_features
|
| 189 |
else:
|
| 190 |
selected_features = all_features
|
| 191 |
|
| 192 |
# Scale numerical features (additional features only)
|
| 193 |
if additional_features.shape[1] > 0:
|
| 194 |
self.feature_scaler = StandardScaler()
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
self.feature_scaler.fit(additional_selected)
|
| 199 |
-
except Exception as e:
|
| 200 |
-
logger.warning(f"Feature scaling failed: {e}")
|
| 201 |
-
self.feature_scaler = None
|
| 202 |
|
| 203 |
-
# Generate feature names
|
| 204 |
-
self.
|
| 205 |
|
| 206 |
# Calculate feature importance if possible
|
| 207 |
if y is not None and self.feature_selector is not None:
|
|
@@ -215,6 +182,12 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 215 |
def transform(self, X):
|
| 216 |
"""
|
| 217 |
Transform text data into enhanced feature vectors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
"""
|
| 219 |
if not self.is_fitted_:
|
| 220 |
raise ValueError("Pipeline must be fitted before transforming")
|
|
@@ -226,62 +199,42 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 226 |
X = np.array(X)
|
| 227 |
|
| 228 |
# Extract TF-IDF features
|
| 229 |
-
|
| 230 |
-
tfidf_features = self.tfidf_vectorizer.transform(X)
|
| 231 |
-
except Exception as e:
|
| 232 |
-
logger.error(f"TF-IDF transform failed: {e}")
|
| 233 |
-
# Return minimal features if transform fails
|
| 234 |
-
return np.zeros((len(X), len(self.feature_names_) if self.feature_names_ else 100))
|
| 235 |
|
| 236 |
# Extract additional features
|
| 237 |
additional_features = self._extract_additional_features(X, fit=False)
|
| 238 |
|
| 239 |
# Combine features
|
| 240 |
if additional_features.shape[1] > 0:
|
| 241 |
-
|
| 242 |
-
all_features = hstack([tfidf_features, additional_features])
|
| 243 |
-
except Exception as e:
|
| 244 |
-
logger.warning(f"Failed to combine features in transform: {e}")
|
| 245 |
-
all_features = tfidf_features
|
| 246 |
else:
|
| 247 |
all_features = tfidf_features
|
| 248 |
|
| 249 |
# Apply feature selection
|
| 250 |
if self.feature_selector is not None:
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
selected_features = self.feature_selector.transform(features_dense)
|
| 260 |
-
except Exception as e:
|
| 261 |
-
logger.warning(f"Feature selection failed in transform: {e}")
|
| 262 |
-
selected_features = all_features
|
| 263 |
else:
|
| 264 |
selected_features = all_features
|
| 265 |
|
| 266 |
# Scale additional features if scaler exists
|
| 267 |
if self.feature_scaler is not None and additional_features.shape[1] > 0:
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
final_features = np.hstack([tfidf_selected, additional_scaled])
|
| 279 |
-
except Exception as e:
|
| 280 |
-
logger.warning(f"Feature scaling failed in transform: {e}")
|
| 281 |
-
if hasattr(selected_features, 'toarray'):
|
| 282 |
-
final_features = selected_features.toarray()
|
| 283 |
-
else:
|
| 284 |
-
final_features = selected_features
|
| 285 |
else:
|
| 286 |
if hasattr(selected_features, 'toarray'):
|
| 287 |
final_features = selected_features.toarray()
|
|
@@ -291,64 +244,45 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 291 |
return final_features
|
| 292 |
|
| 293 |
def _extract_additional_features(self, X, fit=False):
|
| 294 |
-
"""Extract additional features
|
| 295 |
feature_arrays = []
|
| 296 |
|
| 297 |
try:
|
| 298 |
-
#
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
-
#
|
| 304 |
-
if
|
| 305 |
-
|
| 306 |
-
if
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
# Entity features
|
| 330 |
-
if self.entity_analyzer is not None:
|
| 331 |
-
logger.info("Extracting entity features...")
|
| 332 |
-
try:
|
| 333 |
-
if fit:
|
| 334 |
-
entity_features = self.entity_analyzer.fit_transform(X)
|
| 335 |
-
else:
|
| 336 |
-
entity_features = self.entity_analyzer.transform(X)
|
| 337 |
-
feature_arrays.append(entity_features)
|
| 338 |
-
except Exception as e:
|
| 339 |
-
logger.warning(f"Entity analysis failed: {e}")
|
| 340 |
-
|
| 341 |
-
# Linguistic features
|
| 342 |
-
if self.linguistic_analyzer is not None:
|
| 343 |
-
logger.info("Extracting linguistic features...")
|
| 344 |
-
try:
|
| 345 |
-
if fit:
|
| 346 |
-
linguistic_features = self.linguistic_analyzer.fit_transform(X)
|
| 347 |
-
else:
|
| 348 |
-
linguistic_features = self.linguistic_analyzer.transform(X)
|
| 349 |
-
feature_arrays.append(linguistic_features)
|
| 350 |
-
except Exception as e:
|
| 351 |
-
logger.warning(f"Linguistic analysis failed: {e}")
|
| 352 |
|
| 353 |
# Combine all additional features
|
| 354 |
if feature_arrays:
|
|
@@ -363,130 +297,51 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 363 |
|
| 364 |
return additional_features
|
| 365 |
|
| 366 |
-
def
|
| 367 |
-
"""
|
| 368 |
-
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
word_count = len(text_str.split())
|
| 375 |
-
char_count = len(text_str)
|
| 376 |
-
sentence_count = text_str.count('.') + text_str.count('!') + text_str.count('?')
|
| 377 |
-
sentence_count = max(1, sentence_count) # Avoid division by zero
|
| 378 |
-
|
| 379 |
-
# Basic ratios
|
| 380 |
-
avg_word_length = char_count / max(word_count, 1)
|
| 381 |
-
avg_sentence_length = word_count / sentence_count
|
| 382 |
-
|
| 383 |
-
# Punctuation features
|
| 384 |
-
exclamation_count = text_str.count('!')
|
| 385 |
-
question_count = text_str.count('?')
|
| 386 |
-
uppercase_ratio = sum(1 for c in text_str if c.isupper()) / max(len(text_str), 1)
|
| 387 |
-
|
| 388 |
-
# Feature vector
|
| 389 |
-
feature_vector = [
|
| 390 |
-
word_count,
|
| 391 |
-
char_count,
|
| 392 |
-
sentence_count,
|
| 393 |
-
avg_word_length,
|
| 394 |
-
avg_sentence_length,
|
| 395 |
-
exclamation_count,
|
| 396 |
-
question_count,
|
| 397 |
-
uppercase_ratio
|
| 398 |
-
]
|
| 399 |
-
|
| 400 |
-
features.append(feature_vector)
|
| 401 |
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
"""Generate feature names with proper bounds checking"""
|
| 406 |
-
self.feature_names_ = []
|
| 407 |
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
|
| 414 |
-
#
|
| 415 |
-
|
| 416 |
-
'word_count', 'char_count', 'sentence_count',
|
| 417 |
-
'avg_word_length', 'avg_sentence_length',
|
| 418 |
-
'exclamation_count', 'question_count', 'uppercase_ratio'
|
| 419 |
-
]
|
| 420 |
-
self.feature_names_.extend([f'basic_{name}' for name in basic_feature_names])
|
| 421 |
|
| 422 |
-
#
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
self.feature_names_.extend(self.sentiment_analyzer.get_feature_names())
|
| 427 |
-
except:
|
| 428 |
-
self.feature_names_.extend(['sentiment_compound', 'sentiment_pos', 'sentiment_neg', 'sentiment_neu'])
|
| 429 |
-
|
| 430 |
-
if self.readability_analyzer is not None:
|
| 431 |
-
try:
|
| 432 |
-
self.feature_names_.extend(self.readability_analyzer.get_feature_names())
|
| 433 |
-
except:
|
| 434 |
-
self.feature_names_.extend(['readability_score', 'reading_ease'])
|
| 435 |
-
|
| 436 |
-
if self.entity_analyzer is not None:
|
| 437 |
-
try:
|
| 438 |
-
self.feature_names_.extend(self.entity_analyzer.get_feature_names())
|
| 439 |
-
except:
|
| 440 |
-
self.feature_names_.extend(['entity_person', 'entity_org', 'entity_loc'])
|
| 441 |
-
|
| 442 |
-
if self.linguistic_analyzer is not None:
|
| 443 |
-
try:
|
| 444 |
-
self.feature_names_.extend(self.linguistic_analyzer.get_feature_names())
|
| 445 |
-
except:
|
| 446 |
-
self.feature_names_.extend(['linguistic_complexity', 'pos_diversity'])
|
| 447 |
|
| 448 |
-
#
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
# FIX: Ensure bounds checking
|
| 453 |
-
if len(selected_indices) == len(self.feature_names_):
|
| 454 |
-
self.feature_names_ = [name for i, name in enumerate(self.feature_names_) if selected_indices[i]]
|
| 455 |
-
else:
|
| 456 |
-
logger.warning(f"Feature selection indices mismatch: {len(selected_indices)} vs {len(self.feature_names_)}")
|
| 457 |
-
# Keep original names if mismatch
|
| 458 |
-
except Exception as e:
|
| 459 |
-
logger.warning(f"Failed to apply feature selection to names: {e}")
|
| 460 |
-
|
| 461 |
-
except Exception as e:
|
| 462 |
-
logger.warning(f"Failed to generate feature names: {e}")
|
| 463 |
-
# Generate generic names
|
| 464 |
-
self.feature_names_ = [f'feature_{i}' for i in range(100)] # Default fallback
|
| 465 |
-
|
| 466 |
-
def _calculate_feature_importance(self):
|
| 467 |
-
"""Calculate feature importance scores with error handling"""
|
| 468 |
-
try:
|
| 469 |
-
if self.feature_selector is not None and hasattr(self.feature_selector, 'scores_'):
|
| 470 |
-
scores = self.feature_selector.scores_
|
| 471 |
-
selected_indices = self.feature_selector.get_support()
|
| 472 |
-
|
| 473 |
-
# Get scores for selected features
|
| 474 |
-
selected_scores = scores[selected_indices]
|
| 475 |
-
|
| 476 |
-
# Create importance dictionary with bounds checking
|
| 477 |
-
if len(selected_scores) == len(self.feature_names_):
|
| 478 |
-
self.feature_importance_ = {
|
| 479 |
-
name: float(score) for name, score in zip(self.feature_names_, selected_scores)
|
| 480 |
-
}
|
| 481 |
-
|
| 482 |
-
# Sort by importance
|
| 483 |
-
self.feature_importance_ = dict(
|
| 484 |
-
sorted(self.feature_importance_.items(), key=lambda x: x[1], reverse=True)
|
| 485 |
-
)
|
| 486 |
-
else:
|
| 487 |
-
logger.warning("Feature importance calculation failed due to size mismatch")
|
| 488 |
-
except Exception as e:
|
| 489 |
-
logger.warning(f"Feature importance calculation failed: {e}")
|
| 490 |
|
| 491 |
def get_feature_names(self):
|
| 492 |
"""Get names of output features"""
|
|
@@ -509,19 +364,15 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 509 |
if not self.is_fitted_:
|
| 510 |
raise ValueError("Pipeline must be fitted first")
|
| 511 |
|
| 512 |
-
# Count feature types safely
|
| 513 |
-
feature_type_counts = {
|
| 514 |
-
'tfidf_features': sum(1 for name in self.feature_names_ if name.startswith('tfidf_')),
|
| 515 |
-
'basic_features': sum(1 for name in self.feature_names_ if name.startswith('basic_')),
|
| 516 |
-
'sentiment_features': sum(1 for name in self.feature_names_ if 'sentiment' in name),
|
| 517 |
-
'readability_features': sum(1 for name in self.feature_names_ if 'readability' in name),
|
| 518 |
-
'entity_features': sum(1 for name in self.feature_names_ if 'entity' in name),
|
| 519 |
-
'linguistic_features': sum(1 for name in self.feature_names_ if 'linguistic' in name)
|
| 520 |
-
}
|
| 521 |
-
|
| 522 |
metadata = {
|
| 523 |
'total_features': len(self.feature_names_),
|
| 524 |
-
'feature_types':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
'configuration': {
|
| 526 |
'enable_sentiment': self.enable_sentiment,
|
| 527 |
'enable_readability': self.enable_readability,
|
|
@@ -529,17 +380,39 @@ class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
|
| 529 |
'enable_linguistic': self.enable_linguistic,
|
| 530 |
'feature_selection_k': self.feature_selection_k,
|
| 531 |
'tfidf_max_features': self.tfidf_max_features,
|
| 532 |
-
'ngram_range': self.ngram_range
|
| 533 |
-
'analyzers_available': FEATURE_ANALYZERS_AVAILABLE
|
| 534 |
},
|
| 535 |
'feature_importance_available': bool(self.feature_importance_),
|
| 536 |
'timestamp': datetime.now().isoformat()
|
| 537 |
}
|
| 538 |
|
| 539 |
return metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
|
| 542 |
-
# Convenience functions remain the same...
|
| 543 |
def create_enhanced_pipeline(X_train, y_train,
|
| 544 |
enable_sentiment=True,
|
| 545 |
enable_readability=True,
|
|
@@ -548,18 +421,28 @@ def create_enhanced_pipeline(X_train, y_train,
|
|
| 548 |
feature_selection_k=5000):
|
| 549 |
"""
|
| 550 |
Create and fit an enhanced feature engineering pipeline.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
"""
|
| 552 |
logger.info("Creating enhanced feature engineering pipeline...")
|
| 553 |
|
| 554 |
-
# Create feature engineer
|
| 555 |
feature_engineer = AdvancedFeatureEngineer(
|
| 556 |
-
enable_sentiment=enable_sentiment
|
| 557 |
-
enable_readability=enable_readability
|
| 558 |
-
enable_entities=enable_entities
|
| 559 |
-
enable_linguistic=enable_linguistic
|
| 560 |
-
feature_selection_k=
|
| 561 |
-
tfidf_max_features=min(10000, len(X_train) * 5), # Safer default
|
| 562 |
-
ngram_range=(1, 2) # Reduced complexity
|
| 563 |
)
|
| 564 |
|
| 565 |
# Fit the pipeline
|
|
@@ -570,4 +453,53 @@ def create_enhanced_pipeline(X_train, y_train,
|
|
| 570 |
logger.info(f"Enhanced pipeline created with {metadata['total_features']} features")
|
| 571 |
logger.info(f"Feature breakdown: {metadata['feature_types']}")
|
| 572 |
|
| 573 |
-
return feature_engineer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# File: features/feature_engineer.py
|
| 2 |
+
# Enhanced Feature Engineering Pipeline for Priority 6
|
| 3 |
|
| 4 |
import json
|
| 5 |
import joblib
|
|
|
|
| 20 |
import warnings
|
| 21 |
warnings.filterwarnings('ignore')
|
| 22 |
|
| 23 |
+
# Import feature analyzers
|
| 24 |
+
from features.sentiment_analyzer import SentimentAnalyzer
|
| 25 |
+
from features.readability_analyzer import ReadabilityAnalyzer
|
| 26 |
+
from features.entity_analyzer import EntityAnalyzer
|
| 27 |
+
from features.linguistic_analyzer import LinguisticAnalyzer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Configure logging
|
| 30 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 33 |
|
| 34 |
class AdvancedFeatureEngineer(BaseEstimator, TransformerMixin):
|
| 35 |
"""
|
| 36 |
+
Advanced feature engineering pipeline combining multiple NLP feature extractors
|
| 37 |
+
for enhanced fake news detection performance.
|
| 38 |
"""
|
| 39 |
|
| 40 |
def __init__(self,
|
|
|
|
| 49 |
max_df: float = 0.95):
|
| 50 |
"""
|
| 51 |
Initialize the advanced feature engineering pipeline.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
enable_sentiment: Enable sentiment analysis features
|
| 55 |
+
enable_readability: Enable readability/complexity features
|
| 56 |
+
enable_entities: Enable named entity recognition features
|
| 57 |
+
enable_linguistic: Enable advanced linguistic features
|
| 58 |
+
feature_selection_k: Number of features to select
|
| 59 |
+
tfidf_max_features: Maximum TF-IDF features
|
| 60 |
+
ngram_range: N-gram range for TF-IDF
|
| 61 |
+
min_df: Minimum document frequency for TF-IDF
|
| 62 |
+
max_df: Maximum document frequency for TF-IDF
|
| 63 |
"""
|
| 64 |
+
self.enable_sentiment = enable_sentiment
|
| 65 |
+
self.enable_readability = enable_readability
|
| 66 |
+
self.enable_entities = enable_entities
|
| 67 |
+
self.enable_linguistic = enable_linguistic
|
| 68 |
self.feature_selection_k = feature_selection_k
|
| 69 |
self.tfidf_max_features = tfidf_max_features
|
| 70 |
self.ngram_range = ngram_range
|
| 71 |
self.min_df = min_df
|
| 72 |
self.max_df = max_df
|
| 73 |
|
| 74 |
+
# Initialize feature extractors
|
| 75 |
+
self.sentiment_analyzer = SentimentAnalyzer() if enable_sentiment else None
|
| 76 |
+
self.readability_analyzer = ReadabilityAnalyzer() if enable_readability else None
|
| 77 |
+
self.entity_analyzer = EntityAnalyzer() if enable_entities else None
|
| 78 |
+
self.linguistic_analyzer = LinguisticAnalyzer() if enable_linguistic else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
# Initialize TF-IDF components
|
| 81 |
self.tfidf_vectorizer = None
|
|
|
|
| 89 |
|
| 90 |
def fit(self, X, y=None):
|
| 91 |
"""
|
| 92 |
+
Fit the feature engineering pipeline.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
X: Text data (array-like of strings)
|
| 96 |
+
y: Target labels (optional, for supervised feature selection)
|
| 97 |
"""
|
| 98 |
logger.info("Fitting advanced feature engineering pipeline...")
|
| 99 |
|
|
|
|
| 107 |
if len(X) == 0:
|
| 108 |
raise ValueError("Cannot fit on empty data")
|
| 109 |
|
| 110 |
+
# Initialize TF-IDF vectorizer
|
|
|
|
|
|
|
| 111 |
self.tfidf_vectorizer = TfidfVectorizer(
|
| 112 |
+
max_features=self.tfidf_max_features,
|
| 113 |
ngram_range=self.ngram_range,
|
| 114 |
+
min_df=self.min_df,
|
| 115 |
max_df=self.max_df,
|
| 116 |
stop_words='english',
|
| 117 |
sublinear_tf=True,
|
| 118 |
norm='l2',
|
| 119 |
+
lowercase=True
|
|
|
|
| 120 |
)
|
| 121 |
|
| 122 |
# Fit TF-IDF on text data
|
| 123 |
logger.info("Fitting TF-IDF vectorizer...")
|
| 124 |
+
tfidf_features = self.tfidf_vectorizer.fit_transform(X)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
# Extract additional features
|
| 127 |
additional_features = self._extract_additional_features(X, fit=True)
|
| 128 |
|
| 129 |
# Combine all features
|
| 130 |
if additional_features.shape[1] > 0:
|
| 131 |
+
all_features = hstack([tfidf_features, additional_features])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
else:
|
| 133 |
all_features = tfidf_features
|
| 134 |
|
| 135 |
logger.info(f"Total features before selection: {all_features.shape[1]}")
|
| 136 |
|
| 137 |
+
# Feature selection
|
| 138 |
if y is not None and self.feature_selection_k < all_features.shape[1]:
|
| 139 |
+
logger.info(f"Performing feature selection (k={self.feature_selection_k})...")
|
|
|
|
| 140 |
|
| 141 |
+
# Use chi2 for text features and mutual information for numerical features
|
| 142 |
self.feature_selector = SelectKBest(
|
| 143 |
score_func=chi2,
|
| 144 |
+
k=min(self.feature_selection_k, all_features.shape[1])
|
| 145 |
)
|
| 146 |
|
| 147 |
# Ensure non-negative features for chi2
|
|
|
|
| 153 |
# Make features non-negative for chi2
|
| 154 |
features_dense = np.maximum(features_dense, 0)
|
| 155 |
|
| 156 |
+
self.feature_selector.fit(features_dense, y)
|
| 157 |
+
selected_features = self.feature_selector.transform(features_dense)
|
| 158 |
+
|
| 159 |
+
logger.info(f"Selected {selected_features.shape[1]} features")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
else:
|
| 161 |
selected_features = all_features
|
| 162 |
|
| 163 |
# Scale numerical features (additional features only)
|
| 164 |
if additional_features.shape[1] > 0:
|
| 165 |
self.feature_scaler = StandardScaler()
|
| 166 |
+
# Only scale the additional features part
|
| 167 |
+
additional_selected = selected_features[:, -additional_features.shape[1]:]
|
| 168 |
+
self.feature_scaler.fit(additional_selected)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
# Generate feature names
|
| 171 |
+
self._generate_feature_names()
|
| 172 |
|
| 173 |
# Calculate feature importance if possible
|
| 174 |
if y is not None and self.feature_selector is not None:
|
|
|
|
| 182 |
def transform(self, X):
|
| 183 |
"""
|
| 184 |
Transform text data into enhanced feature vectors.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
X: Text data (array-like of strings)
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
Transformed feature matrix
|
| 191 |
"""
|
| 192 |
if not self.is_fitted_:
|
| 193 |
raise ValueError("Pipeline must be fitted before transforming")
|
|
|
|
| 199 |
X = np.array(X)
|
| 200 |
|
| 201 |
# Extract TF-IDF features
|
| 202 |
+
tfidf_features = self.tfidf_vectorizer.transform(X)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
# Extract additional features
|
| 205 |
additional_features = self._extract_additional_features(X, fit=False)
|
| 206 |
|
| 207 |
# Combine features
|
| 208 |
if additional_features.shape[1] > 0:
|
| 209 |
+
all_features = hstack([tfidf_features, additional_features])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
else:
|
| 211 |
all_features = tfidf_features
|
| 212 |
|
| 213 |
# Apply feature selection
|
| 214 |
if self.feature_selector is not None:
|
| 215 |
+
if hasattr(all_features, 'toarray'):
|
| 216 |
+
features_dense = all_features.toarray()
|
| 217 |
+
else:
|
| 218 |
+
features_dense = all_features
|
| 219 |
+
|
| 220 |
+
# Ensure non-negative for consistency
|
| 221 |
+
features_dense = np.maximum(features_dense, 0)
|
| 222 |
+
selected_features = self.feature_selector.transform(features_dense)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
else:
|
| 224 |
selected_features = all_features
|
| 225 |
|
| 226 |
# Scale additional features if scaler exists
|
| 227 |
if self.feature_scaler is not None and additional_features.shape[1] > 0:
|
| 228 |
+
# Scale only the additional features part
|
| 229 |
+
tfidf_selected = selected_features[:, :-additional_features.shape[1]]
|
| 230 |
+
additional_selected = selected_features[:, -additional_features.shape[1]:]
|
| 231 |
+
additional_scaled = self.feature_scaler.transform(additional_selected)
|
| 232 |
+
|
| 233 |
+
# Combine back
|
| 234 |
+
if hasattr(tfidf_selected, 'toarray'):
|
| 235 |
+
tfidf_selected = tfidf_selected.toarray()
|
| 236 |
+
|
| 237 |
+
final_features = np.hstack([tfidf_selected, additional_scaled])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
else:
|
| 239 |
if hasattr(selected_features, 'toarray'):
|
| 240 |
final_features = selected_features.toarray()
|
|
|
|
| 244 |
return final_features
|
| 245 |
|
| 246 |
def _extract_additional_features(self, X, fit=False):
|
| 247 |
+
"""Extract additional features beyond TF-IDF"""
|
| 248 |
feature_arrays = []
|
| 249 |
|
| 250 |
try:
|
| 251 |
+
# Sentiment features
|
| 252 |
+
if self.sentiment_analyzer is not None:
|
| 253 |
+
logger.info("Extracting sentiment features...")
|
| 254 |
+
if fit:
|
| 255 |
+
sentiment_features = self.sentiment_analyzer.fit_transform(X)
|
| 256 |
+
else:
|
| 257 |
+
sentiment_features = self.sentiment_analyzer.transform(X)
|
| 258 |
+
feature_arrays.append(sentiment_features)
|
| 259 |
|
| 260 |
+
# Readability features
|
| 261 |
+
if self.readability_analyzer is not None:
|
| 262 |
+
logger.info("Extracting readability features...")
|
| 263 |
+
if fit:
|
| 264 |
+
readability_features = self.readability_analyzer.fit_transform(X)
|
| 265 |
+
else:
|
| 266 |
+
readability_features = self.readability_analyzer.transform(X)
|
| 267 |
+
feature_arrays.append(readability_features)
|
| 268 |
+
|
| 269 |
+
# Entity features
|
| 270 |
+
if self.entity_analyzer is not None:
|
| 271 |
+
logger.info("Extracting entity features...")
|
| 272 |
+
if fit:
|
| 273 |
+
entity_features = self.entity_analyzer.fit_transform(X)
|
| 274 |
+
else:
|
| 275 |
+
entity_features = self.entity_analyzer.transform(X)
|
| 276 |
+
feature_arrays.append(entity_features)
|
| 277 |
+
|
| 278 |
+
# Linguistic features
|
| 279 |
+
if self.linguistic_analyzer is not None:
|
| 280 |
+
logger.info("Extracting linguistic features...")
|
| 281 |
+
if fit:
|
| 282 |
+
linguistic_features = self.linguistic_analyzer.fit_transform(X)
|
| 283 |
+
else:
|
| 284 |
+
linguistic_features = self.linguistic_analyzer.transform(X)
|
| 285 |
+
feature_arrays.append(linguistic_features)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
# Combine all additional features
|
| 288 |
if feature_arrays:
|
|
|
|
| 297 |
|
| 298 |
return additional_features
|
| 299 |
|
| 300 |
+
def _generate_feature_names(self):
|
| 301 |
+
"""Generate comprehensive feature names"""
|
| 302 |
+
self.feature_names_ = []
|
| 303 |
|
| 304 |
+
# TF-IDF feature names
|
| 305 |
+
if self.tfidf_vectorizer is not None:
|
| 306 |
+
tfidf_names = [f"tfidf_{name}" for name in self.tfidf_vectorizer.get_feature_names_out()]
|
| 307 |
+
self.feature_names_.extend(tfidf_names)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
+
# Additional feature names
|
| 310 |
+
if self.sentiment_analyzer is not None:
|
| 311 |
+
self.feature_names_.extend(self.sentiment_analyzer.get_feature_names())
|
|
|
|
|
|
|
| 312 |
|
| 313 |
+
if self.readability_analyzer is not None:
|
| 314 |
+
self.feature_names_.extend(self.readability_analyzer.get_feature_names())
|
| 315 |
+
|
| 316 |
+
if self.entity_analyzer is not None:
|
| 317 |
+
self.feature_names_.extend(self.entity_analyzer.get_feature_names())
|
| 318 |
+
|
| 319 |
+
if self.linguistic_analyzer is not None:
|
| 320 |
+
self.feature_names_.extend(self.linguistic_analyzer.get_feature_names())
|
| 321 |
+
|
| 322 |
+
# Apply feature selection to names if applicable
|
| 323 |
+
if self.feature_selector is not None:
|
| 324 |
+
selected_indices = self.feature_selector.get_support()
|
| 325 |
+
self.feature_names_ = [name for i, name in enumerate(self.feature_names_) if selected_indices[i]]
|
| 326 |
+
|
| 327 |
+
def _calculate_feature_importance(self):
|
| 328 |
+
"""Calculate feature importance scores"""
|
| 329 |
+
if self.feature_selector is not None:
|
| 330 |
+
scores = self.feature_selector.scores_
|
| 331 |
+
selected_indices = self.feature_selector.get_support()
|
| 332 |
|
| 333 |
+
# Get scores for selected features
|
| 334 |
+
selected_scores = scores[selected_indices]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
+
# Create importance dictionary
|
| 337 |
+
self.feature_importance_ = {
|
| 338 |
+
name: float(score) for name, score in zip(self.feature_names_, selected_scores)
|
| 339 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
+
# Sort by importance
|
| 342 |
+
self.feature_importance_ = dict(
|
| 343 |
+
sorted(self.feature_importance_.items(), key=lambda x: x[1], reverse=True)
|
| 344 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
def get_feature_names(self):
|
| 347 |
"""Get names of output features"""
|
|
|
|
| 364 |
if not self.is_fitted_:
|
| 365 |
raise ValueError("Pipeline must be fitted first")
|
| 366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
metadata = {
|
| 368 |
'total_features': len(self.feature_names_),
|
| 369 |
+
'feature_types': {
|
| 370 |
+
'tfidf_features': sum(1 for name in self.feature_names_ if name.startswith('tfidf_')),
|
| 371 |
+
'sentiment_features': sum(1 for name in self.feature_names_ if name.startswith('sentiment_')),
|
| 372 |
+
'readability_features': sum(1 for name in self.feature_names_ if name.startswith('readability_')),
|
| 373 |
+
'entity_features': sum(1 for name in self.feature_names_ if name.startswith('entity_')),
|
| 374 |
+
'linguistic_features': sum(1 for name in self.feature_names_ if name.startswith('linguistic_'))
|
| 375 |
+
},
|
| 376 |
'configuration': {
|
| 377 |
'enable_sentiment': self.enable_sentiment,
|
| 378 |
'enable_readability': self.enable_readability,
|
|
|
|
| 380 |
'enable_linguistic': self.enable_linguistic,
|
| 381 |
'feature_selection_k': self.feature_selection_k,
|
| 382 |
'tfidf_max_features': self.tfidf_max_features,
|
| 383 |
+
'ngram_range': self.ngram_range
|
|
|
|
| 384 |
},
|
| 385 |
'feature_importance_available': bool(self.feature_importance_),
|
| 386 |
'timestamp': datetime.now().isoformat()
|
| 387 |
}
|
| 388 |
|
| 389 |
return metadata
|
| 390 |
+
|
| 391 |
+
def save_pipeline(self, filepath):
|
| 392 |
+
"""Save the fitted pipeline"""
|
| 393 |
+
if not self.is_fitted_:
|
| 394 |
+
raise ValueError("Pipeline must be fitted before saving")
|
| 395 |
+
|
| 396 |
+
save_data = {
|
| 397 |
+
'feature_engineer': self,
|
| 398 |
+
'metadata': self.get_feature_metadata(),
|
| 399 |
+
'feature_names': self.feature_names_,
|
| 400 |
+
'feature_importance': self.feature_importance_
|
| 401 |
+
}
|
| 402 |
+
|
| 403 |
+
joblib.dump(save_data, filepath)
|
| 404 |
+
logger.info(f"Feature engineering pipeline saved to {filepath}")
|
| 405 |
+
|
| 406 |
+
@classmethod
|
| 407 |
+
def load_pipeline(cls, filepath):
|
| 408 |
+
"""Load a fitted pipeline"""
|
| 409 |
+
save_data = joblib.load(filepath)
|
| 410 |
+
feature_engineer = save_data['feature_engineer']
|
| 411 |
+
|
| 412 |
+
logger.info(f"Feature engineering pipeline loaded from {filepath}")
|
| 413 |
+
return feature_engineer
|
| 414 |
|
| 415 |
|
|
|
|
| 416 |
def create_enhanced_pipeline(X_train, y_train,
|
| 417 |
enable_sentiment=True,
|
| 418 |
enable_readability=True,
|
|
|
|
| 421 |
feature_selection_k=5000):
|
| 422 |
"""
|
| 423 |
Create and fit an enhanced feature engineering pipeline.
|
| 424 |
+
|
| 425 |
+
Args:
|
| 426 |
+
X_train: Training text data
|
| 427 |
+
y_train: Training labels
|
| 428 |
+
enable_sentiment: Enable sentiment analysis features
|
| 429 |
+
enable_readability: Enable readability features
|
| 430 |
+
enable_entities: Enable entity features
|
| 431 |
+
enable_linguistic: Enable linguistic features
|
| 432 |
+
feature_selection_k: Number of features to select
|
| 433 |
+
|
| 434 |
+
Returns:
|
| 435 |
+
Fitted AdvancedFeatureEngineer instance
|
| 436 |
"""
|
| 437 |
logger.info("Creating enhanced feature engineering pipeline...")
|
| 438 |
|
| 439 |
+
# Create feature engineer
|
| 440 |
feature_engineer = AdvancedFeatureEngineer(
|
| 441 |
+
enable_sentiment=enable_sentiment,
|
| 442 |
+
enable_readability=enable_readability,
|
| 443 |
+
enable_entities=enable_entities,
|
| 444 |
+
enable_linguistic=enable_linguistic,
|
| 445 |
+
feature_selection_k=feature_selection_k
|
|
|
|
|
|
|
| 446 |
)
|
| 447 |
|
| 448 |
# Fit the pipeline
|
|
|
|
| 453 |
logger.info(f"Enhanced pipeline created with {metadata['total_features']} features")
|
| 454 |
logger.info(f"Feature breakdown: {metadata['feature_types']}")
|
| 455 |
|
| 456 |
+
return feature_engineer
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def analyze_feature_importance(feature_engineer, top_k=20):
|
| 460 |
+
"""
|
| 461 |
+
Analyze and display feature importance.
|
| 462 |
+
|
| 463 |
+
Args:
|
| 464 |
+
feature_engineer: Fitted AdvancedFeatureEngineer instance
|
| 465 |
+
top_k: Number of top features to analyze
|
| 466 |
+
|
| 467 |
+
Returns:
|
| 468 |
+
Dictionary with feature analysis results
|
| 469 |
+
"""
|
| 470 |
+
if not feature_engineer.is_fitted_:
|
| 471 |
+
raise ValueError("Feature engineer must be fitted first")
|
| 472 |
+
|
| 473 |
+
# Get feature importance
|
| 474 |
+
importance = feature_engineer.get_feature_importance(top_k=top_k)
|
| 475 |
+
metadata = feature_engineer.get_feature_metadata()
|
| 476 |
+
|
| 477 |
+
# Analyze feature types in top features
|
| 478 |
+
top_features = list(importance.keys())
|
| 479 |
+
feature_type_counts = {}
|
| 480 |
+
|
| 481 |
+
for feature in top_features:
|
| 482 |
+
if feature.startswith('tfidf_'):
|
| 483 |
+
feature_type = 'tfidf'
|
| 484 |
+
elif feature.startswith('sentiment_'):
|
| 485 |
+
feature_type = 'sentiment'
|
| 486 |
+
elif feature.startswith('readability_'):
|
| 487 |
+
feature_type = 'readability'
|
| 488 |
+
elif feature.startswith('entity_'):
|
| 489 |
+
feature_type = 'entity'
|
| 490 |
+
elif feature.startswith('linguistic_'):
|
| 491 |
+
feature_type = 'linguistic'
|
| 492 |
+
else:
|
| 493 |
+
feature_type = 'other'
|
| 494 |
+
|
| 495 |
+
feature_type_counts[feature_type] = feature_type_counts.get(feature_type, 0) + 1
|
| 496 |
+
|
| 497 |
+
analysis = {
|
| 498 |
+
'top_features': importance,
|
| 499 |
+
'feature_type_distribution': feature_type_counts,
|
| 500 |
+
'total_features': metadata['total_features'],
|
| 501 |
+
'feature_breakdown': metadata['feature_types'],
|
| 502 |
+
'analysis_timestamp': datetime.now().isoformat()
|
| 503 |
+
}
|
| 504 |
+
|
| 505 |
+
return analysis
|