Commit
·
dbb9a1a
1
Parent(s):
ead9c37
Update model/retrain.py
Browse filesCross Validation Implementation
- model/retrain.py +529 -153
model/retrain.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
import joblib
|
@@ -17,7 +20,9 @@ from sklearn.metrics import (
|
|
17 |
accuracy_score, precision_score, recall_score, f1_score,
|
18 |
roc_auc_score, confusion_matrix, classification_report
|
19 |
)
|
20 |
-
from sklearn.model_selection import
|
|
|
|
|
21 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
22 |
from sklearn.linear_model import LogisticRegression
|
23 |
from sklearn.ensemble import RandomForestClassifier
|
@@ -36,13 +41,322 @@ logging.basicConfig(
|
|
36 |
)
|
37 |
logger = logging.getLogger(__name__)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
class RobustModelRetrainer:
|
40 |
-
"""Production-ready model retraining with
|
41 |
|
42 |
def __init__(self):
|
43 |
self.setup_paths()
|
44 |
self.setup_retraining_config()
|
45 |
self.setup_statistical_tests()
|
|
|
46 |
|
47 |
def setup_paths(self):
|
48 |
"""Setup all necessary paths"""
|
@@ -81,7 +395,7 @@ class RobustModelRetrainer:
|
|
81 |
self.min_new_samples = 50
|
82 |
self.improvement_threshold = 0.01 # 1% improvement required
|
83 |
self.significance_level = 0.05
|
84 |
-
self.cv_folds = 5
|
85 |
self.test_size = 0.2
|
86 |
self.random_state = 42
|
87 |
self.max_retries = 3
|
@@ -90,9 +404,9 @@ class RobustModelRetrainer:
|
|
90 |
def setup_statistical_tests(self):
|
91 |
"""Setup statistical test configurations"""
|
92 |
self.statistical_tests = {
|
93 |
-
'mcnemar': {'alpha': 0.05, 'name': "McNemar's Test"},
|
94 |
'paired_ttest': {'alpha': 0.05, 'name': "Paired T-Test"},
|
95 |
-
'wilcoxon': {'alpha': 0.05, 'name': "Wilcoxon Signed-Rank Test"}
|
|
|
96 |
}
|
97 |
|
98 |
def load_existing_metadata(self) -> Optional[Dict]:
|
@@ -246,146 +560,129 @@ class RobustModelRetrainer:
|
|
246 |
return pipeline
|
247 |
|
248 |
def train_candidate_model(self, df: pd.DataFrame) -> Tuple[bool, Optional[Any], Dict]:
|
249 |
-
"""Train candidate model with comprehensive evaluation"""
|
250 |
try:
|
251 |
-
logger.info("Training candidate model...")
|
252 |
|
253 |
# Prepare data
|
254 |
X = df['text'].values
|
255 |
y = df['label'].values
|
256 |
|
257 |
-
# Train-test split
|
258 |
-
from sklearn.model_selection import train_test_split
|
259 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
260 |
-
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
|
261 |
-
)
|
262 |
-
|
263 |
# Create and train pipeline
|
264 |
pipeline = self.create_advanced_pipeline()
|
265 |
-
pipeline.fit(X_train, y_train)
|
266 |
|
267 |
-
#
|
268 |
-
|
|
|
269 |
|
270 |
-
#
|
271 |
-
|
272 |
-
joblib.dump(pipeline.named_steps['model'], self.candidate_model_path)
|
273 |
-
joblib.dump(pipeline.named_steps['vectorize'], self.candidate_vectorizer_path)
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
278 |
|
279 |
-
|
|
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
return False, None, {'error': error_msg}
|
285 |
-
|
286 |
-
def evaluate_model(self, model, X_test, y_test, X_train=None, y_train=None) -> Dict:
|
287 |
-
"""Comprehensive model evaluation"""
|
288 |
-
try:
|
289 |
-
# Predictions
|
290 |
-
y_pred = model.predict(X_test)
|
291 |
-
y_pred_proba = model.predict_proba(X_test)[:, 1]
|
292 |
|
293 |
-
|
294 |
-
metrics = {
|
295 |
'accuracy': float(accuracy_score(y_test, y_pred)),
|
296 |
'precision': float(precision_score(y_test, y_pred, average='weighted')),
|
297 |
'recall': float(recall_score(y_test, y_pred, average='weighted')),
|
298 |
'f1': float(f1_score(y_test, y_pred, average='weighted')),
|
299 |
-
'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
|
300 |
-
'confusion_matrix': confusion_matrix(y_test, y_pred).tolist(),
|
301 |
-
'evaluation_timestamp': datetime.now().isoformat()
|
302 |
}
|
303 |
|
304 |
-
#
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
)
|
312 |
-
metrics['cv_f1_mean'] = float(cv_scores.mean())
|
313 |
-
metrics['cv_f1_std'] = float(cv_scores.std())
|
314 |
-
except Exception as e:
|
315 |
-
logger.warning(f"Cross-validation failed: {e}")
|
316 |
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
except Exception as e:
|
320 |
-
|
321 |
-
|
|
|
322 |
|
323 |
-
def
|
324 |
-
"""
|
|
|
|
|
|
|
325 |
try:
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
candidate_pred = candidate_model.predict(X_test)
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
candidate_accuracy = accuracy_score(y_test, candidate_pred)
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
'
|
339 |
-
'
|
340 |
-
'
|
341 |
-
'
|
342 |
-
}
|
343 |
-
|
344 |
-
# McNemar's test for paired predictions
|
345 |
-
try:
|
346 |
-
# Create contingency table
|
347 |
-
prod_correct = (prod_pred == y_test)
|
348 |
-
candidate_correct = (candidate_pred == y_test)
|
349 |
-
|
350 |
-
both_correct = np.sum(prod_correct & candidate_correct)
|
351 |
-
prod_only = np.sum(prod_correct & ~candidate_correct)
|
352 |
-
candidate_only = np.sum(~prod_correct & candidate_correct)
|
353 |
-
both_wrong = np.sum(~prod_correct & ~candidate_correct)
|
354 |
-
|
355 |
-
# McNemar's test
|
356 |
-
if prod_only + candidate_only > 0:
|
357 |
-
mcnemar_stat = (abs(prod_only - candidate_only) - 1) ** 2 / (prod_only + candidate_only)
|
358 |
-
p_value = 1 - stats.chi2.cdf(mcnemar_stat, 1)
|
359 |
-
|
360 |
-
comparison_results['statistical_tests']['mcnemar'] = {
|
361 |
-
'statistic': float(mcnemar_stat),
|
362 |
-
'p_value': float(p_value),
|
363 |
-
'significant': p_value < self.significance_level,
|
364 |
-
'contingency_table': {
|
365 |
-
'both_correct': int(both_correct),
|
366 |
-
'prod_only': int(prod_only),
|
367 |
-
'candidate_only': int(candidate_only),
|
368 |
-
'both_wrong': int(both_wrong)
|
369 |
-
}
|
370 |
-
}
|
371 |
-
|
372 |
-
except Exception as e:
|
373 |
-
logger.warning(f"McNemar's test failed: {e}")
|
374 |
-
|
375 |
-
# Practical significance test
|
376 |
-
comparison_results['practical_significance'] = {
|
377 |
-
'meets_threshold': comparison_results['absolute_improvement'] >= self.improvement_threshold,
|
378 |
-
'threshold': self.improvement_threshold,
|
379 |
-
'recommendation': 'promote' if (
|
380 |
-
comparison_results['absolute_improvement'] >= self.improvement_threshold and
|
381 |
-
comparison_results['statistical_tests'].get('mcnemar', {}).get('significant', False)
|
382 |
-
) else 'keep_current'
|
383 |
}
|
384 |
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
except Exception as e:
|
388 |
-
logger.error(f"
|
389 |
return {'error': str(e)}
|
390 |
|
391 |
def create_backup(self) -> bool:
|
@@ -415,7 +712,7 @@ class RobustModelRetrainer:
|
|
415 |
return False
|
416 |
|
417 |
def promote_candidate_model(self, candidate_model, candidate_metrics: Dict, comparison_results: Dict) -> bool:
|
418 |
-
"""Promote candidate model to production"""
|
419 |
try:
|
420 |
logger.info("Promoting candidate model to production...")
|
421 |
|
@@ -429,7 +726,7 @@ class RobustModelRetrainer:
|
|
429 |
shutil.copy2(self.candidate_vectorizer_path, self.prod_vectorizer_path)
|
430 |
shutil.copy2(self.candidate_pipeline_path, self.prod_pipeline_path)
|
431 |
|
432 |
-
# Update metadata
|
433 |
metadata = self.load_existing_metadata() or {}
|
434 |
|
435 |
# Increment version
|
@@ -443,27 +740,78 @@ class RobustModelRetrainer:
|
|
443 |
else:
|
444 |
new_version = f"v1.{int(datetime.now().timestamp()) % 1000}"
|
445 |
|
446 |
-
#
|
|
|
|
|
|
|
|
|
447 |
metadata.update({
|
448 |
'model_version': new_version,
|
449 |
-
'model_type': '
|
450 |
'previous_version': old_version,
|
451 |
-
'test_accuracy': candidate_metrics['accuracy'],
|
452 |
-
'test_f1': candidate_metrics['f1'],
|
453 |
-
'test_precision': candidate_metrics['precision'],
|
454 |
-
'test_recall': candidate_metrics['recall'],
|
455 |
-
'test_roc_auc': candidate_metrics['roc_auc'],
|
456 |
-
'improvement_over_previous': comparison_results['absolute_improvement'],
|
457 |
-
'statistical_significance': comparison_results['statistical_tests'].get('mcnemar', {}).get('significant', False),
|
458 |
'promotion_timestamp': datetime.now().isoformat(),
|
459 |
-
'retrain_trigger': '
|
|
|
|
|
460 |
})
|
461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
# Save updated metadata
|
463 |
with open(self.metadata_path, 'w') as f:
|
464 |
json.dump(metadata, f, indent=2)
|
465 |
|
466 |
logger.info(f"Model promoted successfully to {new_version}")
|
|
|
467 |
return True
|
468 |
|
469 |
except Exception as e:
|
@@ -471,12 +819,13 @@ class RobustModelRetrainer:
|
|
471 |
return False
|
472 |
|
473 |
def log_retraining_session(self, results: Dict):
|
474 |
-
"""Log retraining session results"""
|
475 |
try:
|
476 |
log_entry = {
|
477 |
'timestamp': datetime.now().isoformat(),
|
478 |
'results': results,
|
479 |
-
'session_id': hashlib.md5(str(datetime.now()).encode()).hexdigest()[:8]
|
|
|
480 |
}
|
481 |
|
482 |
# Load existing logs
|
@@ -499,13 +848,36 @@ class RobustModelRetrainer:
|
|
499 |
with open(self.retraining_log_path, 'w') as f:
|
500 |
json.dump(logs, f, indent=2)
|
501 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
except Exception as e:
|
503 |
logger.error(f"Failed to log retraining session: {str(e)}")
|
504 |
|
505 |
def retrain_model(self) -> Tuple[bool, str]:
|
506 |
-
"""Main retraining function with comprehensive validation"""
|
507 |
try:
|
508 |
-
logger.info("Starting model retraining
|
509 |
|
510 |
# Load existing metadata
|
511 |
existing_metadata = self.load_existing_metadata()
|
@@ -528,22 +900,18 @@ class RobustModelRetrainer:
|
|
528 |
if len(df) < self.min_new_samples:
|
529 |
return False, f"Insufficient new data: {len(df)} < {self.min_new_samples}"
|
530 |
|
531 |
-
# Train candidate model
|
532 |
candidate_success, candidate_model, candidate_metrics = self.train_candidate_model(df)
|
533 |
if not candidate_success:
|
534 |
return False, f"Candidate training failed: {candidate_metrics.get('error', 'Unknown error')}"
|
535 |
|
536 |
-
# Prepare
|
537 |
X = df['text'].values
|
538 |
y = df['label'].values
|
539 |
-
from sklearn.model_selection import train_test_split
|
540 |
-
_, X_test, _, y_test = train_test_split(
|
541 |
-
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
|
542 |
-
)
|
543 |
|
544 |
-
#
|
545 |
-
comparison_results = self.
|
546 |
-
prod_model, candidate_model,
|
547 |
)
|
548 |
|
549 |
# Log results
|
@@ -551,16 +919,15 @@ class RobustModelRetrainer:
|
|
551 |
'candidate_metrics': candidate_metrics,
|
552 |
'comparison_results': comparison_results,
|
553 |
'data_size': len(df),
|
554 |
-
'
|
|
|
555 |
}
|
556 |
|
557 |
self.log_retraining_session(session_results)
|
558 |
|
559 |
-
#
|
560 |
-
|
561 |
-
|
562 |
-
comparison_results.get('statistical_tests', {}).get('mcnemar', {}).get('significant', False)
|
563 |
-
)
|
564 |
|
565 |
if should_promote:
|
566 |
# Promote candidate model
|
@@ -569,10 +936,16 @@ class RobustModelRetrainer:
|
|
569 |
)
|
570 |
|
571 |
if promotion_success:
|
|
|
|
|
|
|
|
|
|
|
572 |
success_msg = (
|
573 |
-
f"Model promoted successfully! "
|
574 |
-
f"
|
575 |
-
f"
|
|
|
576 |
)
|
577 |
logger.info(success_msg)
|
578 |
return True, success_msg
|
@@ -580,21 +953,24 @@ class RobustModelRetrainer:
|
|
580 |
return False, "Model promotion failed"
|
581 |
else:
|
582 |
# Keep current model
|
|
|
|
|
|
|
583 |
keep_msg = (
|
584 |
-
f"Keeping current model. "
|
585 |
-
f"
|
586 |
-
f"
|
587 |
)
|
588 |
logger.info(keep_msg)
|
589 |
return True, keep_msg
|
590 |
|
591 |
except Exception as e:
|
592 |
-
error_msg = f"
|
593 |
logger.error(error_msg)
|
594 |
return False, error_msg
|
595 |
|
596 |
def main():
|
597 |
-
"""Main execution function"""
|
598 |
retrainer = RobustModelRetrainer()
|
599 |
success, message = retrainer.retrain_model()
|
600 |
|
|
|
1 |
+
# File: model/retrain.py (MODIFIED)
|
2 |
+
# Enhanced version with comprehensive cross-validation for retraining
|
3 |
+
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
import joblib
|
|
|
20 |
accuracy_score, precision_score, recall_score, f1_score,
|
21 |
roc_auc_score, confusion_matrix, classification_report
|
22 |
)
|
23 |
+
from sklearn.model_selection import (
|
24 |
+
cross_val_score, StratifiedKFold, cross_validate, train_test_split
|
25 |
+
)
|
26 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
27 |
from sklearn.linear_model import LogisticRegression
|
28 |
from sklearn.ensemble import RandomForestClassifier
|
|
|
41 |
)
|
42 |
logger = logging.getLogger(__name__)
|
43 |
|
44 |
+
class CVModelComparator:
|
45 |
+
"""Advanced model comparison using cross-validation and statistical tests"""
|
46 |
+
|
47 |
+
def __init__(self, cv_folds: int = 5, random_state: int = 42):
|
48 |
+
self.cv_folds = cv_folds
|
49 |
+
self.random_state = random_state
|
50 |
+
|
51 |
+
def create_cv_strategy(self, X, y) -> StratifiedKFold:
|
52 |
+
"""Create appropriate CV strategy based on data characteristics"""
|
53 |
+
n_samples = len(X)
|
54 |
+
min_samples_per_fold = 3
|
55 |
+
max_folds = n_samples // min_samples_per_fold
|
56 |
+
|
57 |
+
unique_classes = np.unique(y)
|
58 |
+
min_class_count = min([np.sum(y == cls) for cls in unique_classes])
|
59 |
+
max_folds_by_class = min_class_count
|
60 |
+
|
61 |
+
actual_folds = max(2, min(self.cv_folds, max_folds, max_folds_by_class))
|
62 |
+
|
63 |
+
logger.info(f"Using {actual_folds} CV folds for model comparison")
|
64 |
+
|
65 |
+
return StratifiedKFold(
|
66 |
+
n_splits=actual_folds,
|
67 |
+
shuffle=True,
|
68 |
+
random_state=self.random_state
|
69 |
+
)
|
70 |
+
|
71 |
+
def perform_model_cv_evaluation(self, model, X, y, cv_strategy=None) -> Dict:
|
72 |
+
"""Perform comprehensive CV evaluation of a model"""
|
73 |
+
|
74 |
+
if cv_strategy is None:
|
75 |
+
cv_strategy = self.create_cv_strategy(X, y)
|
76 |
+
|
77 |
+
logger.info(f"Performing CV evaluation with {cv_strategy.n_splits} folds...")
|
78 |
+
|
79 |
+
scoring_metrics = {
|
80 |
+
'accuracy': 'accuracy',
|
81 |
+
'precision': 'precision_weighted',
|
82 |
+
'recall': 'recall_weighted',
|
83 |
+
'f1': 'f1_weighted',
|
84 |
+
'roc_auc': 'roc_auc'
|
85 |
+
}
|
86 |
+
|
87 |
+
try:
|
88 |
+
cv_scores = cross_validate(
|
89 |
+
model, X, y,
|
90 |
+
cv=cv_strategy,
|
91 |
+
scoring=scoring_metrics,
|
92 |
+
return_train_score=True,
|
93 |
+
n_jobs=1,
|
94 |
+
verbose=0
|
95 |
+
)
|
96 |
+
|
97 |
+
cv_results = {
|
98 |
+
'n_splits': cv_strategy.n_splits,
|
99 |
+
'test_scores': {},
|
100 |
+
'train_scores': {},
|
101 |
+
'fold_results': []
|
102 |
+
}
|
103 |
+
|
104 |
+
# Process results for each metric
|
105 |
+
for metric_name in scoring_metrics.keys():
|
106 |
+
test_key = f'test_{metric_name}'
|
107 |
+
train_key = f'train_{metric_name}'
|
108 |
+
|
109 |
+
if test_key in cv_scores:
|
110 |
+
test_scores = cv_scores[test_key]
|
111 |
+
cv_results['test_scores'][metric_name] = {
|
112 |
+
'mean': float(np.mean(test_scores)),
|
113 |
+
'std': float(np.std(test_scores)),
|
114 |
+
'min': float(np.min(test_scores)),
|
115 |
+
'max': float(np.max(test_scores)),
|
116 |
+
'scores': test_scores.tolist()
|
117 |
+
}
|
118 |
+
|
119 |
+
if train_key in cv_scores:
|
120 |
+
train_scores = cv_scores[train_key]
|
121 |
+
cv_results['train_scores'][metric_name] = {
|
122 |
+
'mean': float(np.mean(train_scores)),
|
123 |
+
'std': float(np.std(train_scores)),
|
124 |
+
'scores': train_scores.tolist()
|
125 |
+
}
|
126 |
+
|
127 |
+
# Individual fold results
|
128 |
+
for fold_idx in range(cv_strategy.n_splits):
|
129 |
+
fold_result = {
|
130 |
+
'fold': fold_idx + 1,
|
131 |
+
'test_scores': {},
|
132 |
+
'train_scores': {}
|
133 |
+
}
|
134 |
+
|
135 |
+
for metric_name in scoring_metrics.keys():
|
136 |
+
test_key = f'test_{metric_name}'
|
137 |
+
train_key = f'train_{metric_name}'
|
138 |
+
|
139 |
+
if test_key in cv_scores:
|
140 |
+
fold_result['test_scores'][metric_name] = float(cv_scores[test_key][fold_idx])
|
141 |
+
if train_key in cv_scores:
|
142 |
+
fold_result['train_scores'][metric_name] = float(cv_scores[train_key][fold_idx])
|
143 |
+
|
144 |
+
cv_results['fold_results'].append(fold_result)
|
145 |
+
|
146 |
+
# Calculate overfitting and stability scores
|
147 |
+
if 'accuracy' in cv_results['test_scores'] and 'accuracy' in cv_results['train_scores']:
|
148 |
+
train_mean = cv_results['train_scores']['accuracy']['mean']
|
149 |
+
test_mean = cv_results['test_scores']['accuracy']['mean']
|
150 |
+
cv_results['overfitting_score'] = float(train_mean - test_mean)
|
151 |
+
|
152 |
+
test_std = cv_results['test_scores']['accuracy']['std']
|
153 |
+
cv_results['stability_score'] = float(1 - (test_std / test_mean)) if test_mean > 0 else 0
|
154 |
+
|
155 |
+
return cv_results
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
logger.error(f"CV evaluation failed: {e}")
|
159 |
+
return {'error': str(e), 'n_splits': cv_strategy.n_splits}
|
160 |
+
|
161 |
+
def compare_models_with_cv(self, model1, model2, X, y, model1_name="Production", model2_name="Candidate") -> Dict:
|
162 |
+
"""Compare two models using cross-validation and statistical tests"""
|
163 |
+
|
164 |
+
logger.info(f"Comparing {model1_name} vs {model2_name} models using CV...")
|
165 |
+
|
166 |
+
try:
|
167 |
+
cv_strategy = self.create_cv_strategy(X, y)
|
168 |
+
|
169 |
+
# Evaluate both models with same CV folds
|
170 |
+
results1 = self.perform_model_cv_evaluation(model1, X, y, cv_strategy)
|
171 |
+
results2 = self.perform_model_cv_evaluation(model2, X, y, cv_strategy)
|
172 |
+
|
173 |
+
if 'error' in results1 or 'error' in results2:
|
174 |
+
return {
|
175 |
+
'error': 'One or both models failed CV evaluation',
|
176 |
+
'model1_results': results1,
|
177 |
+
'model2_results': results2
|
178 |
+
}
|
179 |
+
|
180 |
+
# Statistical comparison
|
181 |
+
comparison_results = {
|
182 |
+
'model1_name': model1_name,
|
183 |
+
'model2_name': model2_name,
|
184 |
+
'cv_folds': cv_strategy.n_splits,
|
185 |
+
'model1_cv_results': results1,
|
186 |
+
'model2_cv_results': results2,
|
187 |
+
'statistical_tests': {},
|
188 |
+
'metric_comparisons': {}
|
189 |
+
}
|
190 |
+
|
191 |
+
# Compare each metric
|
192 |
+
for metric in ['accuracy', 'f1', 'precision', 'recall']:
|
193 |
+
if (metric in results1['test_scores'] and
|
194 |
+
metric in results2['test_scores']):
|
195 |
+
|
196 |
+
scores1 = results1['test_scores'][metric]['scores']
|
197 |
+
scores2 = results2['test_scores'][metric]['scores']
|
198 |
+
|
199 |
+
metric_comparison = self._compare_metric_scores(
|
200 |
+
scores1, scores2, metric, model1_name, model2_name
|
201 |
+
)
|
202 |
+
comparison_results['metric_comparisons'][metric] = metric_comparison
|
203 |
+
|
204 |
+
# Overall recommendation
|
205 |
+
f1_comparison = comparison_results['metric_comparisons'].get('f1', {})
|
206 |
+
accuracy_comparison = comparison_results['metric_comparisons'].get('accuracy', {})
|
207 |
+
|
208 |
+
# Decision logic for model promotion
|
209 |
+
promote_candidate = False
|
210 |
+
promotion_reason = ""
|
211 |
+
|
212 |
+
if f1_comparison.get('significant_improvement', False):
|
213 |
+
promote_candidate = True
|
214 |
+
promotion_reason = f"Significant F1 improvement: {f1_comparison.get('improvement', 0):.4f}"
|
215 |
+
elif (f1_comparison.get('improvement', 0) > 0.01 and
|
216 |
+
accuracy_comparison.get('improvement', 0) > 0.01):
|
217 |
+
promote_candidate = True
|
218 |
+
promotion_reason = "Practical improvement in both F1 and accuracy"
|
219 |
+
elif f1_comparison.get('improvement', 0) > 0.02:
|
220 |
+
promote_candidate = True
|
221 |
+
promotion_reason = f"Large F1 improvement: {f1_comparison.get('improvement', 0):.4f}"
|
222 |
+
else:
|
223 |
+
promotion_reason = "No significant improvement detected"
|
224 |
+
|
225 |
+
comparison_results['promotion_decision'] = {
|
226 |
+
'promote_candidate': promote_candidate,
|
227 |
+
'reason': promotion_reason,
|
228 |
+
'confidence': self._calculate_decision_confidence(comparison_results)
|
229 |
+
}
|
230 |
+
|
231 |
+
logger.info(f"Model comparison completed: {promotion_reason}")
|
232 |
+
return comparison_results
|
233 |
+
|
234 |
+
except Exception as e:
|
235 |
+
logger.error(f"Model comparison failed: {e}")
|
236 |
+
return {'error': str(e)}
|
237 |
+
|
238 |
+
def _compare_metric_scores(self, scores1: list, scores2: list, metric: str,
|
239 |
+
model1_name: str, model2_name: str) -> Dict:
|
240 |
+
"""Compare metric scores between two models using statistical tests"""
|
241 |
+
|
242 |
+
try:
|
243 |
+
# Basic statistics
|
244 |
+
mean1, mean2 = np.mean(scores1), np.mean(scores2)
|
245 |
+
std1, std2 = np.std(scores1), np.std(scores2)
|
246 |
+
improvement = mean2 - mean1
|
247 |
+
|
248 |
+
comparison = {
|
249 |
+
'metric': metric,
|
250 |
+
f'{model1_name.lower()}_mean': float(mean1),
|
251 |
+
f'{model2_name.lower()}_mean': float(mean2),
|
252 |
+
f'{model1_name.lower()}_std': float(std1),
|
253 |
+
f'{model2_name.lower()}_std': float(std2),
|
254 |
+
'improvement': float(improvement),
|
255 |
+
'relative_improvement': float(improvement / mean1 * 100) if mean1 > 0 else 0,
|
256 |
+
'tests': {}
|
257 |
+
}
|
258 |
+
|
259 |
+
# Paired t-test
|
260 |
+
try:
|
261 |
+
t_stat, p_value = stats.ttest_rel(scores2, scores1)
|
262 |
+
comparison['tests']['paired_ttest'] = {
|
263 |
+
't_statistic': float(t_stat),
|
264 |
+
'p_value': float(p_value),
|
265 |
+
'significant': p_value < 0.05
|
266 |
+
}
|
267 |
+
except Exception as e:
|
268 |
+
logger.warning(f"Paired t-test failed for {metric}: {e}")
|
269 |
+
|
270 |
+
# Wilcoxon signed-rank test (non-parametric alternative)
|
271 |
+
try:
|
272 |
+
w_stat, w_p_value = stats.wilcoxon(scores2, scores1, alternative='greater')
|
273 |
+
comparison['tests']['wilcoxon'] = {
|
274 |
+
'statistic': float(w_stat),
|
275 |
+
'p_value': float(w_p_value),
|
276 |
+
'significant': w_p_value < 0.05
|
277 |
+
}
|
278 |
+
except Exception as e:
|
279 |
+
logger.warning(f"Wilcoxon test failed for {metric}: {e}")
|
280 |
+
|
281 |
+
# Effect size (Cohen's d)
|
282 |
+
try:
|
283 |
+
pooled_std = np.sqrt(((len(scores1) - 1) * std1**2 + (len(scores2) - 1) * std2**2) /
|
284 |
+
(len(scores1) + len(scores2) - 2))
|
285 |
+
cohens_d = improvement / pooled_std if pooled_std > 0 else 0
|
286 |
+
comparison['effect_size'] = float(cohens_d)
|
287 |
+
except Exception:
|
288 |
+
comparison['effect_size'] = 0
|
289 |
+
|
290 |
+
# Practical significance
|
291 |
+
practical_threshold = 0.01 # 1% improvement threshold
|
292 |
+
comparison['practical_significance'] = abs(improvement) > practical_threshold
|
293 |
+
comparison['significant_improvement'] = (
|
294 |
+
improvement > practical_threshold and
|
295 |
+
comparison['tests'].get('paired_ttest', {}).get('significant', False)
|
296 |
+
)
|
297 |
+
|
298 |
+
return comparison
|
299 |
+
|
300 |
+
except Exception as e:
|
301 |
+
logger.error(f"Metric comparison failed for {metric}: {e}")
|
302 |
+
return {'metric': metric, 'error': str(e)}
|
303 |
+
|
304 |
+
def _calculate_decision_confidence(self, comparison_results: Dict) -> float:
|
305 |
+
"""Calculate confidence in the promotion decision"""
|
306 |
+
|
307 |
+
try:
|
308 |
+
confidence_factors = []
|
309 |
+
|
310 |
+
# Check F1 improvement significance
|
311 |
+
f1_comp = comparison_results['metric_comparisons'].get('f1', {})
|
312 |
+
if f1_comp.get('significant_improvement', False):
|
313 |
+
confidence_factors.append(0.4)
|
314 |
+
elif f1_comp.get('improvement', 0) > 0.01:
|
315 |
+
confidence_factors.append(0.2)
|
316 |
+
|
317 |
+
# Check consistency across metrics
|
318 |
+
improved_metrics = 0
|
319 |
+
total_metrics = 0
|
320 |
+
for metric_comp in comparison_results['metric_comparisons'].values():
|
321 |
+
if isinstance(metric_comp, dict) and 'improvement' in metric_comp:
|
322 |
+
total_metrics += 1
|
323 |
+
if metric_comp['improvement'] > 0:
|
324 |
+
improved_metrics += 1
|
325 |
+
|
326 |
+
if total_metrics > 0:
|
327 |
+
consistency_score = improved_metrics / total_metrics
|
328 |
+
confidence_factors.append(consistency_score * 0.3)
|
329 |
+
|
330 |
+
# Check effect sizes
|
331 |
+
effect_sizes = []
|
332 |
+
for metric_comp in comparison_results['metric_comparisons'].values():
|
333 |
+
if isinstance(metric_comp, dict) and 'effect_size' in metric_comp:
|
334 |
+
effect_sizes.append(abs(metric_comp['effect_size']))
|
335 |
+
|
336 |
+
if effect_sizes:
|
337 |
+
avg_effect_size = np.mean(effect_sizes)
|
338 |
+
if avg_effect_size > 0.5: # Large effect
|
339 |
+
confidence_factors.append(0.2)
|
340 |
+
elif avg_effect_size > 0.2: # Medium effect
|
341 |
+
confidence_factors.append(0.1)
|
342 |
+
|
343 |
+
# Calculate final confidence
|
344 |
+
total_confidence = sum(confidence_factors)
|
345 |
+
return min(1.0, max(0.0, total_confidence))
|
346 |
+
|
347 |
+
except Exception as e:
|
348 |
+
logger.warning(f"Confidence calculation failed: {e}")
|
349 |
+
return 0.5
|
350 |
+
|
351 |
+
|
352 |
class RobustModelRetrainer:
|
353 |
+
"""Production-ready model retraining with comprehensive CV and statistical validation"""
|
354 |
|
355 |
def __init__(self):
|
356 |
self.setup_paths()
|
357 |
self.setup_retraining_config()
|
358 |
self.setup_statistical_tests()
|
359 |
+
self.cv_comparator = CVModelComparator()
|
360 |
|
361 |
def setup_paths(self):
|
362 |
"""Setup all necessary paths"""
|
|
|
395 |
self.min_new_samples = 50
|
396 |
self.improvement_threshold = 0.01 # 1% improvement required
|
397 |
self.significance_level = 0.05
|
398 |
+
self.cv_folds = 5 # Increased for better validation
|
399 |
self.test_size = 0.2
|
400 |
self.random_state = 42
|
401 |
self.max_retries = 3
|
|
|
404 |
def setup_statistical_tests(self):
|
405 |
"""Setup statistical test configurations"""
|
406 |
self.statistical_tests = {
|
|
|
407 |
'paired_ttest': {'alpha': 0.05, 'name': "Paired T-Test"},
|
408 |
+
'wilcoxon': {'alpha': 0.05, 'name': "Wilcoxon Signed-Rank Test"},
|
409 |
+
'mcnemar': {'alpha': 0.05, 'name': "McNemar's Test"}
|
410 |
}
|
411 |
|
412 |
def load_existing_metadata(self) -> Optional[Dict]:
|
|
|
560 |
return pipeline
|
561 |
|
562 |
def train_candidate_model(self, df: pd.DataFrame) -> Tuple[bool, Optional[Any], Dict]:
|
563 |
+
"""Train candidate model with comprehensive CV evaluation"""
|
564 |
try:
|
565 |
+
logger.info("Training candidate model with cross-validation...")
|
566 |
|
567 |
# Prepare data
|
568 |
X = df['text'].values
|
569 |
y = df['label'].values
|
570 |
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
# Create and train pipeline
|
572 |
pipeline = self.create_advanced_pipeline()
|
|
|
573 |
|
574 |
+
# Perform cross-validation before final training
|
575 |
+
logger.info("Performing cross-validation on candidate model...")
|
576 |
+
cv_results = self.cv_comparator.perform_model_cv_evaluation(pipeline, X, y)
|
577 |
|
578 |
+
# Train on full dataset for final model
|
579 |
+
pipeline.fit(X, y)
|
|
|
|
|
580 |
|
581 |
+
# Additional holdout evaluation
|
582 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
583 |
+
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
|
584 |
+
)
|
585 |
|
586 |
+
pipeline_holdout = self.create_advanced_pipeline()
|
587 |
+
pipeline_holdout.fit(X_train, y_train)
|
588 |
|
589 |
+
# Evaluate on holdout
|
590 |
+
y_pred = pipeline_holdout.predict(X_test)
|
591 |
+
y_pred_proba = pipeline_holdout.predict_proba(X_test)[:, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
|
593 |
+
holdout_metrics = {
|
|
|
594 |
'accuracy': float(accuracy_score(y_test, y_pred)),
|
595 |
'precision': float(precision_score(y_test, y_pred, average='weighted')),
|
596 |
'recall': float(recall_score(y_test, y_pred, average='weighted')),
|
597 |
'f1': float(f1_score(y_test, y_pred, average='weighted')),
|
598 |
+
'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
|
|
|
|
|
599 |
}
|
600 |
|
601 |
+
# Combine CV and holdout results
|
602 |
+
evaluation_results = {
|
603 |
+
'cross_validation': cv_results,
|
604 |
+
'holdout_evaluation': holdout_metrics,
|
605 |
+
'training_samples': len(X),
|
606 |
+
'test_samples': len(X_test)
|
607 |
+
}
|
|
|
|
|
|
|
|
|
|
|
608 |
|
609 |
+
# Save candidate model
|
610 |
+
joblib.dump(pipeline, self.candidate_pipeline_path)
|
611 |
+
if hasattr(pipeline, 'named_steps'):
|
612 |
+
joblib.dump(pipeline.named_steps['model'], self.candidate_model_path)
|
613 |
+
joblib.dump(pipeline.named_steps['vectorize'], self.candidate_vectorizer_path)
|
614 |
+
|
615 |
+
# Log results
|
616 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
617 |
+
cv_f1_mean = cv_results['test_scores']['f1']['mean']
|
618 |
+
cv_f1_std = cv_results['test_scores']['f1']['std']
|
619 |
+
logger.info(f"Candidate model CV F1: {cv_f1_mean:.4f} (±{cv_f1_std:.4f})")
|
620 |
+
|
621 |
+
logger.info(f"Candidate model holdout F1: {holdout_metrics['f1']:.4f}")
|
622 |
+
logger.info(f"Candidate model training completed")
|
623 |
+
|
624 |
+
return True, pipeline, evaluation_results
|
625 |
|
626 |
except Exception as e:
|
627 |
+
error_msg = f"Candidate model training failed: {str(e)}"
|
628 |
+
logger.error(error_msg)
|
629 |
+
return False, None, {'error': error_msg}
|
630 |
|
631 |
+
def compare_models_with_cv_validation(self, prod_model, candidate_model, X, y) -> Dict:
|
632 |
+
"""Compare models using comprehensive cross-validation"""
|
633 |
+
|
634 |
+
logger.info("Performing comprehensive model comparison with CV...")
|
635 |
+
|
636 |
try:
|
637 |
+
# Use the CV comparator for detailed analysis
|
638 |
+
comparison_results = self.cv_comparator.compare_models_with_cv(
|
639 |
+
prod_model, candidate_model, X, y, "Production", "Candidate"
|
640 |
+
)
|
|
|
641 |
|
642 |
+
if 'error' in comparison_results:
|
643 |
+
return comparison_results
|
|
|
644 |
|
645 |
+
# Additional legacy format for backward compatibility
|
646 |
+
legacy_comparison = {
|
647 |
+
'production_cv_results': comparison_results['model1_cv_results'],
|
648 |
+
'candidate_cv_results': comparison_results['model2_cv_results'],
|
649 |
+
'statistical_tests': comparison_results['statistical_tests'],
|
650 |
+
'promotion_decision': comparison_results['promotion_decision']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
}
|
652 |
|
653 |
+
# Extract key metrics for legacy format
|
654 |
+
prod_cv = comparison_results['model1_cv_results']
|
655 |
+
cand_cv = comparison_results['model2_cv_results']
|
656 |
+
|
657 |
+
if 'test_scores' in prod_cv and 'test_scores' in cand_cv:
|
658 |
+
if 'accuracy' in prod_cv['test_scores'] and 'accuracy' in cand_cv['test_scores']:
|
659 |
+
legacy_comparison.update({
|
660 |
+
'production_accuracy': prod_cv['test_scores']['accuracy']['mean'],
|
661 |
+
'candidate_accuracy': cand_cv['test_scores']['accuracy']['mean'],
|
662 |
+
'absolute_improvement': (cand_cv['test_scores']['accuracy']['mean'] -
|
663 |
+
prod_cv['test_scores']['accuracy']['mean']),
|
664 |
+
'relative_improvement': ((cand_cv['test_scores']['accuracy']['mean'] -
|
665 |
+
prod_cv['test_scores']['accuracy']['mean']) /
|
666 |
+
prod_cv['test_scores']['accuracy']['mean'] * 100)
|
667 |
+
})
|
668 |
+
|
669 |
+
# Merge detailed and legacy formats
|
670 |
+
final_results = {**comparison_results, **legacy_comparison}
|
671 |
+
|
672 |
+
# Log summary
|
673 |
+
f1_comp = comparison_results.get('metric_comparisons', {}).get('f1', {})
|
674 |
+
if f1_comp:
|
675 |
+
logger.info(f"F1 improvement: {f1_comp.get('improvement', 0):.4f}")
|
676 |
+
logger.info(f"Significant improvement: {f1_comp.get('significant_improvement', False)}")
|
677 |
+
|
678 |
+
promotion_decision = comparison_results.get('promotion_decision', {})
|
679 |
+
logger.info(f"Promotion recommendation: {promotion_decision.get('promote_candidate', False)}")
|
680 |
+
logger.info(f"Reason: {promotion_decision.get('reason', 'Unknown')}")
|
681 |
+
|
682 |
+
return final_results
|
683 |
|
684 |
except Exception as e:
|
685 |
+
logger.error(f"Model comparison failed: {str(e)}")
|
686 |
return {'error': str(e)}
|
687 |
|
688 |
def create_backup(self) -> bool:
|
|
|
712 |
return False
|
713 |
|
714 |
def promote_candidate_model(self, candidate_model, candidate_metrics: Dict, comparison_results: Dict) -> bool:
|
715 |
+
"""Promote candidate model to production with enhanced metadata"""
|
716 |
try:
|
717 |
logger.info("Promoting candidate model to production...")
|
718 |
|
|
|
726 |
shutil.copy2(self.candidate_vectorizer_path, self.prod_vectorizer_path)
|
727 |
shutil.copy2(self.candidate_pipeline_path, self.prod_pipeline_path)
|
728 |
|
729 |
+
# Update metadata with comprehensive CV information
|
730 |
metadata = self.load_existing_metadata() or {}
|
731 |
|
732 |
# Increment version
|
|
|
740 |
else:
|
741 |
new_version = f"v1.{int(datetime.now().timestamp()) % 1000}"
|
742 |
|
743 |
+
# Extract metrics from candidate evaluation
|
744 |
+
cv_results = candidate_metrics.get('cross_validation', {})
|
745 |
+
holdout_results = candidate_metrics.get('holdout_evaluation', {})
|
746 |
+
|
747 |
+
# Update metadata with comprehensive information
|
748 |
metadata.update({
|
749 |
'model_version': new_version,
|
750 |
+
'model_type': 'retrained_pipeline_cv',
|
751 |
'previous_version': old_version,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
752 |
'promotion_timestamp': datetime.now().isoformat(),
|
753 |
+
'retrain_trigger': 'cv_validated_retrain',
|
754 |
+
'training_samples': candidate_metrics.get('training_samples', 'Unknown'),
|
755 |
+
'test_samples': candidate_metrics.get('test_samples', 'Unknown')
|
756 |
})
|
757 |
|
758 |
+
# Add holdout evaluation results
|
759 |
+
if holdout_results:
|
760 |
+
metadata.update({
|
761 |
+
'test_accuracy': holdout_results.get('accuracy', 'Unknown'),
|
762 |
+
'test_f1': holdout_results.get('f1', 'Unknown'),
|
763 |
+
'test_precision': holdout_results.get('precision', 'Unknown'),
|
764 |
+
'test_recall': holdout_results.get('recall', 'Unknown'),
|
765 |
+
'test_roc_auc': holdout_results.get('roc_auc', 'Unknown')
|
766 |
+
})
|
767 |
+
|
768 |
+
# Add comprehensive CV results
|
769 |
+
if cv_results and 'test_scores' in cv_results:
|
770 |
+
metadata['cross_validation'] = {
|
771 |
+
'n_splits': cv_results.get('n_splits', self.cv_folds),
|
772 |
+
'test_scores': cv_results['test_scores'],
|
773 |
+
'train_scores': cv_results.get('train_scores', {}),
|
774 |
+
'overfitting_score': cv_results.get('overfitting_score', 'Unknown'),
|
775 |
+
'stability_score': cv_results.get('stability_score', 'Unknown'),
|
776 |
+
'individual_fold_results': cv_results.get('fold_results', [])
|
777 |
+
}
|
778 |
+
|
779 |
+
# Add CV summary statistics
|
780 |
+
if 'f1' in cv_results['test_scores']:
|
781 |
+
metadata.update({
|
782 |
+
'cv_f1_mean': cv_results['test_scores']['f1']['mean'],
|
783 |
+
'cv_f1_std': cv_results['test_scores']['f1']['std'],
|
784 |
+
'cv_f1_min': cv_results['test_scores']['f1']['min'],
|
785 |
+
'cv_f1_max': cv_results['test_scores']['f1']['max']
|
786 |
+
})
|
787 |
+
|
788 |
+
# Add model comparison results
|
789 |
+
promotion_decision = comparison_results.get('promotion_decision', {})
|
790 |
+
metadata['promotion_validation'] = {
|
791 |
+
'decision_confidence': promotion_decision.get('confidence', 'Unknown'),
|
792 |
+
'promotion_reason': promotion_decision.get('reason', 'Unknown'),
|
793 |
+
'comparison_method': 'cross_validation_statistical_tests'
|
794 |
+
}
|
795 |
+
|
796 |
+
# Add statistical test results
|
797 |
+
metric_comparisons = comparison_results.get('metric_comparisons', {})
|
798 |
+
if metric_comparisons:
|
799 |
+
metadata['statistical_validation'] = {}
|
800 |
+
for metric, comparison in metric_comparisons.items():
|
801 |
+
if isinstance(comparison, dict):
|
802 |
+
metadata['statistical_validation'][metric] = {
|
803 |
+
'improvement': comparison.get('improvement', 0),
|
804 |
+
'significant_improvement': comparison.get('significant_improvement', False),
|
805 |
+
'effect_size': comparison.get('effect_size', 0),
|
806 |
+
'tests': comparison.get('tests', {})
|
807 |
+
}
|
808 |
+
|
809 |
# Save updated metadata
|
810 |
with open(self.metadata_path, 'w') as f:
|
811 |
json.dump(metadata, f, indent=2)
|
812 |
|
813 |
logger.info(f"Model promoted successfully to {new_version}")
|
814 |
+
logger.info(f"Promotion reason: {promotion_decision.get('reason', 'CV validation passed')}")
|
815 |
return True
|
816 |
|
817 |
except Exception as e:
|
|
|
819 |
return False
|
820 |
|
821 |
def log_retraining_session(self, results: Dict):
|
822 |
+
"""Log comprehensive retraining session results"""
|
823 |
try:
|
824 |
log_entry = {
|
825 |
'timestamp': datetime.now().isoformat(),
|
826 |
'results': results,
|
827 |
+
'session_id': hashlib.md5(str(datetime.now()).encode()).hexdigest()[:8],
|
828 |
+
'retraining_type': 'cv_enhanced'
|
829 |
}
|
830 |
|
831 |
# Load existing logs
|
|
|
848 |
with open(self.retraining_log_path, 'w') as f:
|
849 |
json.dump(logs, f, indent=2)
|
850 |
|
851 |
+
# Also save detailed comparison results
|
852 |
+
if 'comparison_results' in results:
|
853 |
+
comparison_logs = []
|
854 |
+
if self.comparison_log_path.exists():
|
855 |
+
try:
|
856 |
+
with open(self.comparison_log_path, 'r') as f:
|
857 |
+
comparison_logs = json.load(f)
|
858 |
+
except:
|
859 |
+
comparison_logs = []
|
860 |
+
|
861 |
+
comparison_entry = {
|
862 |
+
'timestamp': datetime.now().isoformat(),
|
863 |
+
'session_id': log_entry['session_id'],
|
864 |
+
'comparison_details': results['comparison_results']
|
865 |
+
}
|
866 |
+
|
867 |
+
comparison_logs.append(comparison_entry)
|
868 |
+
if len(comparison_logs) > 50:
|
869 |
+
comparison_logs = comparison_logs[-50:]
|
870 |
+
|
871 |
+
with open(self.comparison_log_path, 'w') as f:
|
872 |
+
json.dump(comparison_logs, f, indent=2)
|
873 |
+
|
874 |
except Exception as e:
|
875 |
logger.error(f"Failed to log retraining session: {str(e)}")
|
876 |
|
877 |
def retrain_model(self) -> Tuple[bool, str]:
|
878 |
+
"""Main retraining function with comprehensive CV validation"""
|
879 |
try:
|
880 |
+
logger.info("Starting enhanced model retraining with cross-validation...")
|
881 |
|
882 |
# Load existing metadata
|
883 |
existing_metadata = self.load_existing_metadata()
|
|
|
900 |
if len(df) < self.min_new_samples:
|
901 |
return False, f"Insufficient new data: {len(df)} < {self.min_new_samples}"
|
902 |
|
903 |
+
# Train candidate model with CV
|
904 |
candidate_success, candidate_model, candidate_metrics = self.train_candidate_model(df)
|
905 |
if not candidate_success:
|
906 |
return False, f"Candidate training failed: {candidate_metrics.get('error', 'Unknown error')}"
|
907 |
|
908 |
+
# Prepare data for model comparison
|
909 |
X = df['text'].values
|
910 |
y = df['label'].values
|
|
|
|
|
|
|
|
|
911 |
|
912 |
+
# Comprehensive model comparison with CV
|
913 |
+
comparison_results = self.compare_models_with_cv_validation(
|
914 |
+
prod_model, candidate_model, X, y
|
915 |
)
|
916 |
|
917 |
# Log results
|
|
|
919 |
'candidate_metrics': candidate_metrics,
|
920 |
'comparison_results': comparison_results,
|
921 |
'data_size': len(df),
|
922 |
+
'cv_folds': self.cv_folds,
|
923 |
+
'retraining_method': 'cv_enhanced'
|
924 |
}
|
925 |
|
926 |
self.log_retraining_session(session_results)
|
927 |
|
928 |
+
# Decision based on CV comparison
|
929 |
+
promotion_decision = comparison_results.get('promotion_decision', {})
|
930 |
+
should_promote = promotion_decision.get('promote_candidate', False)
|
|
|
|
|
931 |
|
932 |
if should_promote:
|
933 |
# Promote candidate model
|
|
|
936 |
)
|
937 |
|
938 |
if promotion_success:
|
939 |
+
# Extract improvement information
|
940 |
+
f1_comp = comparison_results.get('metric_comparisons', {}).get('f1', {})
|
941 |
+
improvement = f1_comp.get('improvement', 0)
|
942 |
+
confidence = promotion_decision.get('confidence', 0)
|
943 |
+
|
944 |
success_msg = (
|
945 |
+
f"Model promoted successfully with CV validation! "
|
946 |
+
f"F1 improvement: {improvement:.4f}, "
|
947 |
+
f"Confidence: {confidence:.2f}, "
|
948 |
+
f"Reason: {promotion_decision.get('reason', 'CV validation passed')}"
|
949 |
)
|
950 |
logger.info(success_msg)
|
951 |
return True, success_msg
|
|
|
953 |
return False, "Model promotion failed"
|
954 |
else:
|
955 |
# Keep current model
|
956 |
+
reason = promotion_decision.get('reason', 'No significant improvement detected')
|
957 |
+
confidence = promotion_decision.get('confidence', 0)
|
958 |
+
|
959 |
keep_msg = (
|
960 |
+
f"Keeping current model based on CV analysis. "
|
961 |
+
f"Reason: {reason}, "
|
962 |
+
f"Confidence: {confidence:.2f}"
|
963 |
)
|
964 |
logger.info(keep_msg)
|
965 |
return True, keep_msg
|
966 |
|
967 |
except Exception as e:
|
968 |
+
error_msg = f"Enhanced model retraining failed: {str(e)}"
|
969 |
logger.error(error_msg)
|
970 |
return False, error_msg
|
971 |
|
972 |
def main():
|
973 |
+
"""Main execution function with CV enhancements"""
|
974 |
retrainer = RobustModelRetrainer()
|
975 |
success, message = retrainer.retrain_model()
|
976 |
|