Update initialize_system.py
Browse files- initialize_system.py +30 -4
initialize_system.py
CHANGED
@@ -332,12 +332,38 @@ def run_initial_training():
|
|
332 |
test_acc_mean = cv_data['test_scores']['accuracy']['mean']
|
333 |
test_acc_std = cv_data['test_scores']['accuracy']['std']
|
334 |
|
335 |
-
cv_data
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
}
|
339 |
|
340 |
-
# Save CV results
|
341 |
cv_results_path = path_manager.get_logs_path("cv_results.json")
|
342 |
with open(cv_results_path, 'w') as f:
|
343 |
json.dump(cv_data, f, indent=2)
|
|
|
332 |
test_acc_mean = cv_data['test_scores']['accuracy']['mean']
|
333 |
test_acc_std = cv_data['test_scores']['accuracy']['std']
|
334 |
|
335 |
+
cv_data = {
|
336 |
+
"methodology": {
|
337 |
+
"n_splits": 3,
|
338 |
+
"cv_type": "StratifiedKFold",
|
339 |
+
"random_state": 42
|
340 |
+
},
|
341 |
+
"test_scores": {
|
342 |
+
"accuracy": {
|
343 |
+
"mean": test_acc_mean,
|
344 |
+
"std": test_acc_std,
|
345 |
+
"scores": cv_results['test_accuracy'].tolist()
|
346 |
+
},
|
347 |
+
"f1": {
|
348 |
+
"mean": float(cv_results['test_f1_weighted'].mean()),
|
349 |
+
"std": float(cv_results['test_f1_weighted'].std()),
|
350 |
+
"scores": cv_results['test_f1_weighted'].tolist()
|
351 |
+
}
|
352 |
+
},
|
353 |
+
"train_scores": {
|
354 |
+
"accuracy": {
|
355 |
+
"mean": train_acc_mean,
|
356 |
+
"std": float(cv_results['train_accuracy'].std()),
|
357 |
+
"scores": cv_results['train_accuracy'].tolist()
|
358 |
+
}
|
359 |
+
},
|
360 |
+
"performance_indicators": {
|
361 |
+
"overfitting_score": overfitting_score,
|
362 |
+
"stability_score": stability_score
|
363 |
+
}
|
364 |
}
|
365 |
|
366 |
+
# Save CV results
|
367 |
cv_results_path = path_manager.get_logs_path("cv_results.json")
|
368 |
with open(cv_results_path, 'w') as f:
|
369 |
json.dump(cv_data, f, indent=2)
|