Commit
·
aff6c9c
1
Parent(s):
620e5bd
Update monitor/monitor_drift.py
Browse filesAdding Automated Retraining Triggers
- monitor/monitor_drift.py +484 -0
monitor/monitor_drift.py
CHANGED
@@ -667,6 +667,490 @@ class AdvancedDriftMonitor:
|
|
667 |
logger.error(f"Drift monitoring failed: {e}")
|
668 |
return None
|
669 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
670 |
def monitor_drift():
|
671 |
"""Main function for external calls"""
|
672 |
monitor = AdvancedDriftMonitor()
|
|
|
667 |
logger.error(f"Drift monitoring failed: {e}")
|
668 |
return None
|
669 |
|
670 |
+
def setup_automation_config(self):
|
671 |
+
"""Setup automation-specific configuration"""
|
672 |
+
self.automation_config = {
|
673 |
+
'retraining_thresholds': {
|
674 |
+
'drift_score': 0.2,
|
675 |
+
'consecutive_detections': 3,
|
676 |
+
'performance_drop': 0.05,
|
677 |
+
'data_volume_threshold': 1000,
|
678 |
+
'time_since_last_training': timedelta(days=7)
|
679 |
+
},
|
680 |
+
'monitoring_schedule': {
|
681 |
+
'check_interval': timedelta(hours=6),
|
682 |
+
'force_check_interval': timedelta(days=1),
|
683 |
+
'max_monitoring_failures': 5
|
684 |
+
},
|
685 |
+
'emergency_thresholds': {
|
686 |
+
'critical_drift_score': 0.4,
|
687 |
+
'critical_performance_drop': 0.15,
|
688 |
+
'emergency_action_required': True
|
689 |
+
},
|
690 |
+
'data_quality_thresholds': {
|
691 |
+
'min_samples_for_detection': 100,
|
692 |
+
'min_samples_for_retraining': 500,
|
693 |
+
'data_freshness_hours': 24
|
694 |
+
}
|
695 |
+
}
|
696 |
+
|
697 |
+
def check_retraining_triggers(self, drift_results: Dict = None) -> Dict:
|
698 |
+
"""Check if retraining should be triggered based on multiple criteria"""
|
699 |
+
try:
|
700 |
+
trigger_results = {
|
701 |
+
'should_retrain': False,
|
702 |
+
'trigger_reason': None,
|
703 |
+
'urgency': 'none',
|
704 |
+
'triggers_detected': [],
|
705 |
+
'data_quality_check': {},
|
706 |
+
'recommendations': []
|
707 |
+
}
|
708 |
+
|
709 |
+
# Perform drift monitoring if not provided
|
710 |
+
if drift_results is None:
|
711 |
+
reference_df, current_df = self.load_and_prepare_data()
|
712 |
+
if reference_df is None or current_df is None:
|
713 |
+
trigger_results['trigger_reason'] = 'insufficient_data'
|
714 |
+
return trigger_results
|
715 |
+
|
716 |
+
drift_results = self.comprehensive_drift_detection(reference_df, current_df)
|
717 |
+
if 'error' in drift_results:
|
718 |
+
trigger_results['trigger_reason'] = f"drift_detection_error: {drift_results['error']}"
|
719 |
+
return trigger_results
|
720 |
+
|
721 |
+
# Check drift-based triggers
|
722 |
+
drift_triggers = self.check_drift_triggers(drift_results)
|
723 |
+
trigger_results['triggers_detected'].extend(drift_triggers)
|
724 |
+
|
725 |
+
# Check data volume triggers
|
726 |
+
volume_triggers = self.check_data_volume_triggers()
|
727 |
+
trigger_results['triggers_detected'].extend(volume_triggers)
|
728 |
+
|
729 |
+
# Check time-based triggers
|
730 |
+
time_triggers = self.check_time_based_triggers()
|
731 |
+
trigger_results['triggers_detected'].extend(time_triggers)
|
732 |
+
|
733 |
+
# Check data quality
|
734 |
+
trigger_results['data_quality_check'] = self.check_data_quality()
|
735 |
+
|
736 |
+
# Determine if retraining should be triggered
|
737 |
+
trigger_results = self.evaluate_retraining_decision(trigger_results, drift_results)
|
738 |
+
|
739 |
+
# Save trigger evaluation
|
740 |
+
self.save_trigger_evaluation(trigger_results)
|
741 |
+
|
742 |
+
return trigger_results
|
743 |
+
|
744 |
+
except Exception as e:
|
745 |
+
logger.error(f"Retraining trigger check failed: {e}")
|
746 |
+
return {
|
747 |
+
'should_retrain': False,
|
748 |
+
'trigger_reason': f'trigger_check_error: {str(e)}',
|
749 |
+
'urgency': 'none',
|
750 |
+
'triggers_detected': [],
|
751 |
+
'error': str(e)
|
752 |
+
}
|
753 |
+
|
754 |
+
def check_drift_triggers(self, drift_results: Dict) -> List[Dict]:
|
755 |
+
"""Check drift-based retraining triggers"""
|
756 |
+
triggers = []
|
757 |
+
|
758 |
+
# Overall drift score trigger
|
759 |
+
overall_score = drift_results.get('overall_drift_score', 0)
|
760 |
+
if overall_score > self.automation_config['retraining_thresholds']['drift_score']:
|
761 |
+
triggers.append({
|
762 |
+
'type': 'drift_score',
|
763 |
+
'severity': 'high' if overall_score > self.automation_config['emergency_thresholds']['critical_drift_score'] else 'medium',
|
764 |
+
'value': overall_score,
|
765 |
+
'threshold': self.automation_config['retraining_thresholds']['drift_score'],
|
766 |
+
'message': f"Drift score {overall_score:.3f} exceeds threshold {self.automation_config['retraining_thresholds']['drift_score']}"
|
767 |
+
})
|
768 |
+
|
769 |
+
# Performance degradation trigger
|
770 |
+
perf_results = drift_results.get('individual_methods', {}).get('performance_drift', {})
|
771 |
+
if 'performance_drop' in perf_results:
|
772 |
+
perf_drop = perf_results['performance_drop']
|
773 |
+
if perf_drop > self.automation_config['retraining_thresholds']['performance_drop']:
|
774 |
+
triggers.append({
|
775 |
+
'type': 'performance_degradation',
|
776 |
+
'severity': 'critical' if perf_drop > self.automation_config['emergency_thresholds']['critical_performance_drop'] else 'high',
|
777 |
+
'value': perf_drop,
|
778 |
+
'threshold': self.automation_config['retraining_thresholds']['performance_drop'],
|
779 |
+
'message': f"Performance drop {perf_drop:.3f} exceeds threshold"
|
780 |
+
})
|
781 |
+
|
782 |
+
# Consecutive detection trigger
|
783 |
+
consecutive_detections = self.count_consecutive_drift_detections()
|
784 |
+
if consecutive_detections >= self.automation_config['retraining_thresholds']['consecutive_detections']:
|
785 |
+
triggers.append({
|
786 |
+
'type': 'consecutive_detections',
|
787 |
+
'severity': 'medium',
|
788 |
+
'value': consecutive_detections,
|
789 |
+
'threshold': self.automation_config['retraining_thresholds']['consecutive_detections'],
|
790 |
+
'message': f"Drift detected in {consecutive_detections} consecutive monitoring cycles"
|
791 |
+
})
|
792 |
+
|
793 |
+
return triggers
|
794 |
+
|
795 |
+
def check_data_volume_triggers(self) -> List[Dict]:
|
796 |
+
"""Check data volume-based triggers"""
|
797 |
+
triggers = []
|
798 |
+
|
799 |
+
try:
|
800 |
+
# Count new data since last training
|
801 |
+
new_data_count = self.count_new_data_since_training()
|
802 |
+
|
803 |
+
if new_data_count >= self.automation_config['retraining_thresholds']['data_volume_threshold']:
|
804 |
+
triggers.append({
|
805 |
+
'type': 'data_volume',
|
806 |
+
'severity': 'low',
|
807 |
+
'value': new_data_count,
|
808 |
+
'threshold': self.automation_config['retraining_thresholds']['data_volume_threshold'],
|
809 |
+
'message': f"Accumulated {new_data_count} new samples since last training"
|
810 |
+
})
|
811 |
+
|
812 |
+
return triggers
|
813 |
+
|
814 |
+
except Exception as e:
|
815 |
+
logger.warning(f"Data volume trigger check failed: {e}")
|
816 |
+
return []
|
817 |
+
|
818 |
+
def check_time_based_triggers(self) -> List[Dict]:
|
819 |
+
"""Check time-based retraining triggers"""
|
820 |
+
triggers = []
|
821 |
+
|
822 |
+
try:
|
823 |
+
# Get last training time
|
824 |
+
last_training_time = self.get_last_training_time()
|
825 |
+
|
826 |
+
if last_training_time:
|
827 |
+
time_since_training = datetime.now() - last_training_time
|
828 |
+
threshold = self.automation_config['retraining_thresholds']['time_since_last_training']
|
829 |
+
|
830 |
+
if time_since_training > threshold:
|
831 |
+
triggers.append({
|
832 |
+
'type': 'time_since_training',
|
833 |
+
'severity': 'low',
|
834 |
+
'value': time_since_training.days,
|
835 |
+
'threshold': threshold.days,
|
836 |
+
'message': f"Last training was {time_since_training.days} days ago"
|
837 |
+
})
|
838 |
+
|
839 |
+
return triggers
|
840 |
+
|
841 |
+
except Exception as e:
|
842 |
+
logger.warning(f"Time-based trigger check failed: {e}")
|
843 |
+
return []
|
844 |
+
|
845 |
+
def check_data_quality(self) -> Dict:
|
846 |
+
"""Check data quality for retraining"""
|
847 |
+
quality_check = {
|
848 |
+
'sufficient_data': False,
|
849 |
+
'data_freshness': False,
|
850 |
+
'data_balance': False,
|
851 |
+
'overall_quality': 'poor',
|
852 |
+
'issues': []
|
853 |
+
}
|
854 |
+
|
855 |
+
try:
|
856 |
+
# Load current data
|
857 |
+
_, current_df = self.load_and_prepare_data()
|
858 |
+
|
859 |
+
if current_df is None or len(current_df) == 0:
|
860 |
+
quality_check['issues'].append('No current data available')
|
861 |
+
return quality_check
|
862 |
+
|
863 |
+
# Check data volume
|
864 |
+
min_samples = self.automation_config['data_quality_thresholds']['min_samples_for_retraining']
|
865 |
+
if len(current_df) >= min_samples:
|
866 |
+
quality_check['sufficient_data'] = True
|
867 |
+
else:
|
868 |
+
quality_check['issues'].append(f'Insufficient data: {len(current_df)} < {min_samples}')
|
869 |
+
|
870 |
+
# Check data freshness
|
871 |
+
if 'timestamp' in current_df.columns:
|
872 |
+
try:
|
873 |
+
current_df['timestamp'] = pd.to_datetime(current_df['timestamp'])
|
874 |
+
latest_data = current_df['timestamp'].max()
|
875 |
+
freshness_threshold = datetime.now() - timedelta(
|
876 |
+
hours=self.automation_config['data_quality_thresholds']['data_freshness_hours']
|
877 |
+
)
|
878 |
+
|
879 |
+
if latest_data > freshness_threshold:
|
880 |
+
quality_check['data_freshness'] = True
|
881 |
+
else:
|
882 |
+
quality_check['issues'].append('Data is not fresh enough')
|
883 |
+
except:
|
884 |
+
quality_check['issues'].append('Cannot determine data freshness')
|
885 |
+
|
886 |
+
# Check data balance if labels available
|
887 |
+
if 'label' in current_df.columns:
|
888 |
+
label_counts = current_df['label'].value_counts()
|
889 |
+
if len(label_counts) > 1:
|
890 |
+
balance_ratio = label_counts.min() / label_counts.max()
|
891 |
+
if balance_ratio > 0.3: # At least 30% minority class
|
892 |
+
quality_check['data_balance'] = True
|
893 |
+
else:
|
894 |
+
quality_check['issues'].append(f'Data imbalance: ratio {balance_ratio:.2f}')
|
895 |
+
|
896 |
+
# Overall quality assessment
|
897 |
+
quality_score = sum([
|
898 |
+
quality_check['sufficient_data'],
|
899 |
+
quality_check['data_freshness'],
|
900 |
+
quality_check['data_balance']
|
901 |
+
])
|
902 |
+
|
903 |
+
if quality_score >= 3:
|
904 |
+
quality_check['overall_quality'] = 'excellent'
|
905 |
+
elif quality_score >= 2:
|
906 |
+
quality_check['overall_quality'] = 'good'
|
907 |
+
elif quality_score >= 1:
|
908 |
+
quality_check['overall_quality'] = 'fair'
|
909 |
+
else:
|
910 |
+
quality_check['overall_quality'] = 'poor'
|
911 |
+
|
912 |
+
return quality_check
|
913 |
+
|
914 |
+
except Exception as e:
|
915 |
+
logger.error(f"Data quality check failed: {e}")
|
916 |
+
quality_check['issues'].append(f'Quality check error: {str(e)}')
|
917 |
+
return quality_check
|
918 |
+
|
919 |
+
def evaluate_retraining_decision(self, trigger_results: Dict, drift_results: Dict) -> Dict:
|
920 |
+
"""Evaluate whether retraining should be triggered"""
|
921 |
+
|
922 |
+
triggers = trigger_results['triggers_detected']
|
923 |
+
data_quality = trigger_results['data_quality_check']
|
924 |
+
|
925 |
+
# Count trigger types and severities
|
926 |
+
critical_triggers = [t for t in triggers if t['severity'] == 'critical']
|
927 |
+
high_triggers = [t for t in triggers if t['severity'] == 'high']
|
928 |
+
medium_triggers = [t for t in triggers if t['severity'] == 'medium']
|
929 |
+
|
930 |
+
# Decision logic
|
931 |
+
should_retrain = False
|
932 |
+
urgency = 'none'
|
933 |
+
reason = None
|
934 |
+
recommendations = []
|
935 |
+
|
936 |
+
# Critical triggers - immediate retraining
|
937 |
+
if critical_triggers:
|
938 |
+
should_retrain = True
|
939 |
+
urgency = 'critical'
|
940 |
+
reason = f"Critical triggers detected: {[t['type'] for t in critical_triggers]}"
|
941 |
+
recommendations.extend([
|
942 |
+
"URGENT: Critical model degradation detected",
|
943 |
+
"Stop current model serving if possible",
|
944 |
+
"Initiate emergency retraining immediately"
|
945 |
+
])
|
946 |
+
|
947 |
+
# High priority triggers - urgent retraining
|
948 |
+
elif high_triggers:
|
949 |
+
if data_quality['overall_quality'] in ['good', 'excellent']:
|
950 |
+
should_retrain = True
|
951 |
+
urgency = 'high'
|
952 |
+
reason = f"High priority triggers with good data quality: {[t['type'] for t in high_triggers]}"
|
953 |
+
recommendations.extend([
|
954 |
+
"High priority retraining recommended",
|
955 |
+
"Schedule retraining within 24 hours"
|
956 |
+
])
|
957 |
+
else:
|
958 |
+
recommendations.extend([
|
959 |
+
"High priority triggers detected but data quality insufficient",
|
960 |
+
"Improve data quality before retraining"
|
961 |
+
])
|
962 |
+
|
963 |
+
# Medium priority triggers - scheduled retraining
|
964 |
+
elif len(medium_triggers) >= 2 or len(triggers) >= 3:
|
965 |
+
if data_quality['overall_quality'] in ['good', 'excellent', 'fair']:
|
966 |
+
should_retrain = True
|
967 |
+
urgency = 'medium'
|
968 |
+
reason = f"Multiple triggers detected: {[t['type'] for t in triggers]}"
|
969 |
+
recommendations.extend([
|
970 |
+
"Multiple retraining indicators detected",
|
971 |
+
"Schedule retraining within next maintenance window"
|
972 |
+
])
|
973 |
+
|
974 |
+
# Single medium or low priority triggers
|
975 |
+
elif triggers:
|
976 |
+
recommendations.extend([
|
977 |
+
"Some retraining indicators detected",
|
978 |
+
"Monitor closely and prepare for retraining",
|
979 |
+
f"Triggers: {[t['type'] for t in triggers]}"
|
980 |
+
])
|
981 |
+
|
982 |
+
# Update results
|
983 |
+
trigger_results.update({
|
984 |
+
'should_retrain': should_retrain,
|
985 |
+
'urgency': urgency,
|
986 |
+
'trigger_reason': reason,
|
987 |
+
'recommendations': recommendations
|
988 |
+
})
|
989 |
+
|
990 |
+
return trigger_results
|
991 |
+
|
992 |
+
def count_consecutive_drift_detections(self) -> int:
|
993 |
+
"""Count consecutive drift detections from historical data"""
|
994 |
+
try:
|
995 |
+
if not self.drift_log_path.exists():
|
996 |
+
return 0
|
997 |
+
|
998 |
+
with open(self.drift_log_path, 'r') as f:
|
999 |
+
logs = json.load(f)
|
1000 |
+
|
1001 |
+
if not logs:
|
1002 |
+
return 0
|
1003 |
+
|
1004 |
+
# Sort by timestamp and count consecutive detections
|
1005 |
+
logs_sorted = sorted(logs, key=lambda x: x.get('timestamp', ''))
|
1006 |
+
consecutive_count = 0
|
1007 |
+
|
1008 |
+
for log_entry in reversed(logs_sorted[-10:]): # Check last 10 entries
|
1009 |
+
if log_entry.get('overall_drift_detected', False):
|
1010 |
+
consecutive_count += 1
|
1011 |
+
else:
|
1012 |
+
break
|
1013 |
+
|
1014 |
+
return consecutive_count
|
1015 |
+
|
1016 |
+
except Exception as e:
|
1017 |
+
logger.warning(f"Failed to count consecutive detections: {e}")
|
1018 |
+
return 0
|
1019 |
+
|
1020 |
+
def count_new_data_since_training(self) -> int:
|
1021 |
+
"""Count new data samples since last training"""
|
1022 |
+
try:
|
1023 |
+
last_training_time = self.get_last_training_time()
|
1024 |
+
if not last_training_time:
|
1025 |
+
return 0
|
1026 |
+
|
1027 |
+
# Count data from current sources
|
1028 |
+
total_count = 0
|
1029 |
+
|
1030 |
+
for data_path in [self.current_data_path, self.generated_data_path]:
|
1031 |
+
if data_path.exists():
|
1032 |
+
df = pd.read_csv(data_path)
|
1033 |
+
if 'timestamp' in df.columns:
|
1034 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
1035 |
+
new_data = df[df['timestamp'] > last_training_time]
|
1036 |
+
total_count += len(new_data)
|
1037 |
+
else:
|
1038 |
+
# If no timestamp, assume all data is new
|
1039 |
+
total_count += len(df)
|
1040 |
+
|
1041 |
+
return total_count
|
1042 |
+
|
1043 |
+
except Exception as e:
|
1044 |
+
logger.warning(f"Failed to count new data: {e}")
|
1045 |
+
return 0
|
1046 |
+
|
1047 |
+
def get_last_training_time(self) -> Optional[datetime]:
|
1048 |
+
"""Get timestamp of last model training"""
|
1049 |
+
try:
|
1050 |
+
# Check model metadata
|
1051 |
+
metadata_path = self.model_dir / "metadata.json"
|
1052 |
+
if metadata_path.exists():
|
1053 |
+
with open(metadata_path, 'r') as f:
|
1054 |
+
metadata = json.load(f)
|
1055 |
+
|
1056 |
+
timestamp_str = metadata.get('timestamp')
|
1057 |
+
if timestamp_str:
|
1058 |
+
return datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
|
1059 |
+
|
1060 |
+
# Fallback to model file modification time
|
1061 |
+
for model_path in [self.pipeline_path, self.model_path]:
|
1062 |
+
if model_path.exists():
|
1063 |
+
return datetime.fromtimestamp(model_path.stat().st_mtime)
|
1064 |
+
|
1065 |
+
return None
|
1066 |
+
|
1067 |
+
except Exception as e:
|
1068 |
+
logger.warning(f"Failed to get last training time: {e}")
|
1069 |
+
return None
|
1070 |
+
|
1071 |
+
def save_trigger_evaluation(self, trigger_results: Dict):
|
1072 |
+
"""Save trigger evaluation results"""
|
1073 |
+
try:
|
1074 |
+
trigger_log_path = self.logs_dir / "retraining_triggers.json"
|
1075 |
+
|
1076 |
+
# Load existing logs
|
1077 |
+
logs = []
|
1078 |
+
if trigger_log_path.exists():
|
1079 |
+
try:
|
1080 |
+
with open(trigger_log_path, 'r') as f:
|
1081 |
+
logs = json.load(f)
|
1082 |
+
except:
|
1083 |
+
logs = []
|
1084 |
+
|
1085 |
+
# Add timestamp and save
|
1086 |
+
trigger_results['evaluation_timestamp'] = datetime.now().isoformat()
|
1087 |
+
logs.append(trigger_results)
|
1088 |
+
|
1089 |
+
# Keep only last 100 evaluations
|
1090 |
+
if len(logs) > 100:
|
1091 |
+
logs = logs[-100:]
|
1092 |
+
|
1093 |
+
with open(trigger_log_path, 'w') as f:
|
1094 |
+
json.dump(logs, f, indent=2)
|
1095 |
+
|
1096 |
+
logger.info(f"Trigger evaluation saved to {trigger_log_path}")
|
1097 |
+
|
1098 |
+
except Exception as e:
|
1099 |
+
logger.error(f"Failed to save trigger evaluation: {e}")
|
1100 |
+
|
1101 |
+
def get_automation_status(self) -> Dict:
|
1102 |
+
"""Get current automation status and recent trigger evaluations"""
|
1103 |
+
try:
|
1104 |
+
status = {
|
1105 |
+
'automation_active': True,
|
1106 |
+
'last_drift_check': None,
|
1107 |
+
'last_trigger_evaluation': None,
|
1108 |
+
'recent_triggers': [],
|
1109 |
+
'data_quality_status': {},
|
1110 |
+
'next_scheduled_check': None
|
1111 |
+
}
|
1112 |
+
|
1113 |
+
# Get last drift check
|
1114 |
+
if self.drift_log_path.exists():
|
1115 |
+
try:
|
1116 |
+
with open(self.drift_log_path, 'r') as f:
|
1117 |
+
logs = json.load(f)
|
1118 |
+
if logs:
|
1119 |
+
status['last_drift_check'] = logs[-1].get('timestamp')
|
1120 |
+
except:
|
1121 |
+
pass
|
1122 |
+
|
1123 |
+
# Get recent trigger evaluations
|
1124 |
+
trigger_log_path = self.logs_dir / "retraining_triggers.json"
|
1125 |
+
if trigger_log_path.exists():
|
1126 |
+
try:
|
1127 |
+
with open(trigger_log_path, 'r') as f:
|
1128 |
+
trigger_logs = json.load(f)
|
1129 |
+
|
1130 |
+
if trigger_logs:
|
1131 |
+
status['last_trigger_evaluation'] = trigger_logs[-1].get('evaluation_timestamp')
|
1132 |
+
status['recent_triggers'] = trigger_logs[-5:] # Last 5 evaluations
|
1133 |
+
except:
|
1134 |
+
pass
|
1135 |
+
|
1136 |
+
# Get current data quality
|
1137 |
+
status['data_quality_status'] = self.check_data_quality()
|
1138 |
+
|
1139 |
+
return status
|
1140 |
+
|
1141 |
+
except Exception as e:
|
1142 |
+
logger.error(f"Failed to get automation status: {e}")
|
1143 |
+
return {'automation_active': False, 'error': str(e)}
|
1144 |
+
|
1145 |
+
# Add to __init__ method
|
1146 |
+
def __init__(self):
|
1147 |
+
self.setup_paths()
|
1148 |
+
self.setup_drift_config()
|
1149 |
+
self.setup_automation_config()
|
1150 |
+
self.setup_drift_methods()
|
1151 |
+
self.historical_data = self.load_historical_data()
|
1152 |
+
|
1153 |
+
|
1154 |
def monitor_drift():
|
1155 |
"""Main function for external calls"""
|
1156 |
monitor = AdvancedDriftMonitor()
|