Commit
Β·
7e70d4f
1
Parent(s):
6fcb89a
Update model/retrain.py
Browse filesAdded line 46 to load the new data and modified the `train_model(df)` method `train_model()` to remove parameters/arguments to the method
- model/retrain.py +102 -100
model/retrain.py
CHANGED
@@ -1,101 +1,103 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from pathlib import Path
|
3 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
-
from sklearn.linear_model import LogisticRegression
|
5 |
-
from sklearn.model_selection import train_test_split
|
6 |
-
from sklearn.metrics import accuracy_score
|
7 |
-
import joblib
|
8 |
-
import json
|
9 |
-
import hashlib
|
10 |
-
import datetime
|
11 |
-
import shutil
|
12 |
-
|
13 |
-
# Paths
|
14 |
-
BASE_DIR = Path(__file__).resolve().parent
|
15 |
-
DATA_DIR = BASE_DIR.parent / "data"
|
16 |
-
LOGS_DIR = BASE_DIR.parent / "logs"
|
17 |
-
|
18 |
-
COMBINED = DATA_DIR / "combined_dataset.csv"
|
19 |
-
SCRAPED = DATA_DIR / "scraped_real.csv"
|
20 |
-
GENERATED = DATA_DIR / "generated_fake.csv"
|
21 |
-
|
22 |
-
PROD_MODEL = BASE_DIR / "model.pkl"
|
23 |
-
PROD_VECTORIZER = BASE_DIR / "vectorizer.pkl"
|
24 |
-
|
25 |
-
CANDIDATE_MODEL = BASE_DIR / "model_candidate.pkl"
|
26 |
-
CANDIDATE_VECTORIZER = BASE_DIR / "vectorizer_candidate.pkl"
|
27 |
-
|
28 |
-
METADATA_PATH = BASE_DIR / "metadata.json"
|
29 |
-
|
30 |
-
def hash_file(path: Path):
|
31 |
-
return hashlib.md5(path.read_bytes()).hexdigest()
|
32 |
-
|
33 |
-
def load_new_data():
|
34 |
-
dfs = [pd.read_csv(COMBINED)]
|
35 |
-
if SCRAPED.exists():
|
36 |
-
dfs.append(pd.read_csv(SCRAPED))
|
37 |
-
if GENERATED.exists():
|
38 |
-
dfs.append(pd.read_csv(GENERATED))
|
39 |
-
df = pd.concat(dfs, ignore_index=True)
|
40 |
-
df.dropna(subset=["text"], inplace=True)
|
41 |
-
df = df[df["text"].str.strip() != ""]
|
42 |
-
return df
|
43 |
-
|
44 |
-
def train_model(
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
if
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
"
|
90 |
-
"
|
91 |
-
"
|
92 |
-
"
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
print("
|
99 |
-
|
100 |
-
|
|
|
|
|
101 |
main()
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from pathlib import Path
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.linear_model import LogisticRegression
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.metrics import accuracy_score
|
7 |
+
import joblib
|
8 |
+
import json
|
9 |
+
import hashlib
|
10 |
+
import datetime
|
11 |
+
import shutil
|
12 |
+
|
13 |
+
# Paths
|
14 |
+
BASE_DIR = Path(__file__).resolve().parent
|
15 |
+
DATA_DIR = BASE_DIR.parent / "data"
|
16 |
+
LOGS_DIR = BASE_DIR.parent / "logs"
|
17 |
+
|
18 |
+
COMBINED = DATA_DIR / "combined_dataset.csv"
|
19 |
+
SCRAPED = DATA_DIR / "scraped_real.csv"
|
20 |
+
GENERATED = DATA_DIR / "generated_fake.csv"
|
21 |
+
|
22 |
+
PROD_MODEL = BASE_DIR / "model.pkl"
|
23 |
+
PROD_VECTORIZER = BASE_DIR / "vectorizer.pkl"
|
24 |
+
|
25 |
+
CANDIDATE_MODEL = BASE_DIR / "model_candidate.pkl"
|
26 |
+
CANDIDATE_VECTORIZER = BASE_DIR / "vectorizer_candidate.pkl"
|
27 |
+
|
28 |
+
METADATA_PATH = BASE_DIR / "metadata.json"
|
29 |
+
|
30 |
+
def hash_file(path: Path):
|
31 |
+
return hashlib.md5(path.read_bytes()).hexdigest()
|
32 |
+
|
33 |
+
def load_new_data():
|
34 |
+
dfs = [pd.read_csv(COMBINED)]
|
35 |
+
if SCRAPED.exists():
|
36 |
+
dfs.append(pd.read_csv(SCRAPED))
|
37 |
+
if GENERATED.exists():
|
38 |
+
dfs.append(pd.read_csv(GENERATED))
|
39 |
+
df = pd.concat(dfs, ignore_index=True)
|
40 |
+
df.dropna(subset=["text"], inplace=True)
|
41 |
+
df = df[df["text"].str.strip() != ""]
|
42 |
+
return df
|
43 |
+
|
44 |
+
def train_model():
|
45 |
+
# Load the new data
|
46 |
+
df = load_new_data()
|
47 |
+
X = df["text"]
|
48 |
+
y = df["label"]
|
49 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2, random_state=42)
|
50 |
+
|
51 |
+
vec = TfidfVectorizer(stop_words="english", max_features=5000)
|
52 |
+
X_train_vec = vec.fit_transform(X_train)
|
53 |
+
X_test_vec = vec.transform(X_test)
|
54 |
+
|
55 |
+
model = LogisticRegression(max_iter=1000)
|
56 |
+
model.fit(X_train_vec, y_train)
|
57 |
+
acc = accuracy_score(y_test, model.predict(X_test_vec))
|
58 |
+
|
59 |
+
return model, vec, acc, len(X_train), len(X_test)
|
60 |
+
|
61 |
+
def load_metadata():
|
62 |
+
if METADATA_PATH.exists():
|
63 |
+
with open(METADATA_PATH) as f:
|
64 |
+
return json.load(f)
|
65 |
+
return None
|
66 |
+
|
67 |
+
def bump_version(version: str) -> str:
|
68 |
+
major, minor = map(int, version.replace("v", "").split("."))
|
69 |
+
return f"v{major}.{minor+1}"
|
70 |
+
|
71 |
+
def main():
|
72 |
+
print("π Retraining candidate model...")
|
73 |
+
df = load_new_data()
|
74 |
+
model, vec, acc, train_size, test_size = train_model(df)
|
75 |
+
|
76 |
+
print(f"π Candidate Accuracy: {acc:.4f}")
|
77 |
+
joblib.dump(model, CANDIDATE_MODEL)
|
78 |
+
joblib.dump(vec, CANDIDATE_VECTORIZER)
|
79 |
+
|
80 |
+
metadata = load_metadata()
|
81 |
+
prod_acc = metadata["test_accuracy"] if metadata else 0
|
82 |
+
model_version = bump_version(metadata["model_version"]) if metadata else "v1.0"
|
83 |
+
|
84 |
+
if acc > prod_acc:
|
85 |
+
print("β
Candidate outperforms production. Promoting model...")
|
86 |
+
shutil.copy(CANDIDATE_MODEL, PROD_MODEL)
|
87 |
+
shutil.copy(CANDIDATE_VECTORIZER, PROD_VECTORIZER)
|
88 |
+
metadata = {
|
89 |
+
"model_version": model_version,
|
90 |
+
"data_version": hash_file(COMBINED),
|
91 |
+
"train_size": train_size,
|
92 |
+
"test_size": test_size,
|
93 |
+
"test_accuracy": round(acc, 4),
|
94 |
+
"timestamp": datetime.datetime.now().isoformat()
|
95 |
+
}
|
96 |
+
with open(METADATA_PATH, "w") as f:
|
97 |
+
json.dump(metadata, f, indent=2)
|
98 |
+
print(f"π’ Model promoted. Version: {model_version}")
|
99 |
+
else:
|
100 |
+
print("π‘ Candidate did not outperform production. Keeping existing model.")
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
main()
|