Commit
·
5cb20e9
1
Parent(s):
6b4cc07
Create uncertainty_quantification.py
Browse filesEnhanced Uncertainty Quantification (`utils/uncertainty_quantification.py`)
- Model performance uncertainty quantification
- Feature importance uncertainty with stability rankings
- Prediction-level uncertainty assessment using entropy
- Cross-validation stability analysis
- Comprehensive uncertainty reporting with actionable recommendations
utils/uncertainty_quantification.py
ADDED
|
@@ -0,0 +1,775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# utils/uncertainty_quantification.py
|
| 2 |
+
# Enhanced uncertainty quantification integration for existing MLOps pipeline
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Dict, Any, Tuple, Optional, List, Callable
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import json
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
import logging
|
| 11 |
+
|
| 12 |
+
# Import statistical analysis components
|
| 13 |
+
try:
|
| 14 |
+
from .statistical_analysis import (
|
| 15 |
+
MLOpsStatisticalAnalyzer, BootstrapAnalyzer,
|
| 16 |
+
FeatureImportanceAnalyzer, StatisticalResult
|
| 17 |
+
)
|
| 18 |
+
STATISTICAL_ANALYSIS_AVAILABLE = True
|
| 19 |
+
except ImportError:
|
| 20 |
+
STATISTICAL_ANALYSIS_AVAILABLE = False
|
| 21 |
+
logging.warning("Statistical analysis components not available")
|
| 22 |
+
|
| 23 |
+
# Import structured logging
|
| 24 |
+
try:
|
| 25 |
+
from .structured_logger import StructuredLogger, EventType, MLOpsLoggers
|
| 26 |
+
STRUCTURED_LOGGING_AVAILABLE = True
|
| 27 |
+
except ImportError:
|
| 28 |
+
STRUCTURED_LOGGING_AVAILABLE = False
|
| 29 |
+
import logging
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class UncertaintyReport:
|
| 34 |
+
"""Comprehensive uncertainty quantification report"""
|
| 35 |
+
model_performance_uncertainty: Dict[str, Any]
|
| 36 |
+
feature_importance_uncertainty: Dict[str, Any]
|
| 37 |
+
cross_validation_uncertainty: Dict[str, Any]
|
| 38 |
+
prediction_uncertainty: Dict[str, Any]
|
| 39 |
+
model_comparison_uncertainty: Dict[str, Any]
|
| 40 |
+
recommendations: List[Dict[str, Any]]
|
| 41 |
+
confidence_level: float
|
| 42 |
+
analysis_timestamp: str
|
| 43 |
+
|
| 44 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 45 |
+
"""Convert to dictionary for serialization"""
|
| 46 |
+
return {
|
| 47 |
+
'model_performance_uncertainty': self.model_performance_uncertainty,
|
| 48 |
+
'feature_importance_uncertainty': self.feature_importance_uncertainty,
|
| 49 |
+
'cross_validation_uncertainty': self.cross_validation_uncertainty,
|
| 50 |
+
'prediction_uncertainty': self.prediction_uncertainty,
|
| 51 |
+
'model_comparison_uncertainty': self.model_comparison_uncertainty,
|
| 52 |
+
'recommendations': self.recommendations,
|
| 53 |
+
'confidence_level': self.confidence_level,
|
| 54 |
+
'analysis_timestamp': self.analysis_timestamp
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
def save_report(self, file_path: Path = None) -> Path:
|
| 58 |
+
"""Save uncertainty report to file"""
|
| 59 |
+
if file_path is None:
|
| 60 |
+
file_path = Path("/tmp/logs/uncertainty_report.json")
|
| 61 |
+
|
| 62 |
+
file_path.parent.mkdir(parents=True, exist_ok=True)
|
| 63 |
+
|
| 64 |
+
with open(file_path, 'w') as f:
|
| 65 |
+
json.dump(self.to_dict(), f, indent=2, default=str)
|
| 66 |
+
|
| 67 |
+
return file_path
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class EnhancedUncertaintyQuantifier:
|
| 71 |
+
"""Enhanced uncertainty quantification for MLOps pipeline integration"""
|
| 72 |
+
|
| 73 |
+
def __init__(self,
|
| 74 |
+
confidence_level: float = 0.95,
|
| 75 |
+
n_bootstrap: int = 1000,
|
| 76 |
+
random_state: int = 42):
|
| 77 |
+
|
| 78 |
+
self.confidence_level = confidence_level
|
| 79 |
+
self.n_bootstrap = n_bootstrap
|
| 80 |
+
self.random_state = random_state
|
| 81 |
+
|
| 82 |
+
if STATISTICAL_ANALYSIS_AVAILABLE:
|
| 83 |
+
self.statistical_analyzer = MLOpsStatisticalAnalyzer(
|
| 84 |
+
confidence_level, n_bootstrap, random_state
|
| 85 |
+
)
|
| 86 |
+
self.bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap, confidence_level, random_state)
|
| 87 |
+
self.feature_analyzer = FeatureImportanceAnalyzer(n_bootstrap, confidence_level, random_state)
|
| 88 |
+
else:
|
| 89 |
+
raise ImportError("Statistical analysis components required for uncertainty quantification")
|
| 90 |
+
|
| 91 |
+
if STRUCTURED_LOGGING_AVAILABLE:
|
| 92 |
+
self.logger = MLOpsLoggers.get_logger('uncertainty_quantification')
|
| 93 |
+
else:
|
| 94 |
+
self.logger = logging.getLogger(__name__)
|
| 95 |
+
|
| 96 |
+
def quantify_model_uncertainty(self,
|
| 97 |
+
model,
|
| 98 |
+
X_train: np.ndarray,
|
| 99 |
+
X_test: np.ndarray,
|
| 100 |
+
y_train: np.ndarray,
|
| 101 |
+
y_test: np.ndarray,
|
| 102 |
+
model_name: str = "model") -> Dict[str, Any]:
|
| 103 |
+
"""Quantify uncertainty in model performance metrics"""
|
| 104 |
+
|
| 105 |
+
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score
|
| 106 |
+
|
| 107 |
+
# Fit model
|
| 108 |
+
model.fit(X_train, y_train)
|
| 109 |
+
y_pred = model.predict(X_test)
|
| 110 |
+
y_pred_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, 'predict_proba') else y_pred
|
| 111 |
+
|
| 112 |
+
# Define metric functions
|
| 113 |
+
metrics = {
|
| 114 |
+
'accuracy': lambda y_true, y_pred: accuracy_score(y_true, y_pred),
|
| 115 |
+
'f1': lambda y_true, y_pred: f1_score(y_true, y_pred, average='weighted'),
|
| 116 |
+
'precision': lambda y_true, y_pred: precision_score(y_true, y_pred, average='weighted'),
|
| 117 |
+
'recall': lambda y_true, y_pred: recall_score(y_true, y_pred, average='weighted'),
|
| 118 |
+
'roc_auc': lambda y_true, y_pred_proba: roc_auc_score(y_true, y_pred_proba)
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
# Bootstrap confidence intervals for each metric
|
| 122 |
+
uncertainty_results = {}
|
| 123 |
+
|
| 124 |
+
for metric_name, metric_func in metrics.items():
|
| 125 |
+
try:
|
| 126 |
+
if metric_name == 'roc_auc':
|
| 127 |
+
result = self.bootstrap_analyzer.bootstrap_metric(
|
| 128 |
+
y_test, y_pred_proba, metric_func
|
| 129 |
+
)
|
| 130 |
+
else:
|
| 131 |
+
result = self.bootstrap_analyzer.bootstrap_metric(
|
| 132 |
+
y_test, y_pred, metric_func
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
uncertainty_results[metric_name] = {
|
| 136 |
+
'point_estimate': result.point_estimate,
|
| 137 |
+
'confidence_interval': result.confidence_interval,
|
| 138 |
+
'margin_of_error': result.margin_of_error(),
|
| 139 |
+
'relative_uncertainty': result.margin_of_error() / result.point_estimate if result.point_estimate > 0 else np.inf,
|
| 140 |
+
'confidence_level': result.confidence_level,
|
| 141 |
+
'sample_size': result.sample_size,
|
| 142 |
+
'metadata': result.metadata
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
uncertainty_results[metric_name] = {'error': str(e)}
|
| 147 |
+
|
| 148 |
+
# Overall uncertainty assessment
|
| 149 |
+
valid_uncertainties = [
|
| 150 |
+
r['relative_uncertainty'] for r in uncertainty_results.values()
|
| 151 |
+
if isinstance(r, dict) and 'relative_uncertainty' in r and np.isfinite(r['relative_uncertainty'])
|
| 152 |
+
]
|
| 153 |
+
|
| 154 |
+
overall_assessment = {
|
| 155 |
+
'model_name': model_name,
|
| 156 |
+
'average_relative_uncertainty': float(np.mean(valid_uncertainties)) if valid_uncertainties else np.inf,
|
| 157 |
+
'max_relative_uncertainty': float(np.max(valid_uncertainties)) if valid_uncertainties else np.inf,
|
| 158 |
+
'uncertainty_level': self._classify_uncertainty_level(np.mean(valid_uncertainties)) if valid_uncertainties else 'unknown'
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
return {
|
| 162 |
+
'metric_uncertainties': uncertainty_results,
|
| 163 |
+
'overall_assessment': overall_assessment,
|
| 164 |
+
'analysis_metadata': {
|
| 165 |
+
'confidence_level': self.confidence_level,
|
| 166 |
+
'n_bootstrap': self.n_bootstrap,
|
| 167 |
+
'test_size': len(y_test),
|
| 168 |
+
'train_size': len(y_train)
|
| 169 |
+
}
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
def quantify_feature_importance_uncertainty(self,
|
| 173 |
+
model,
|
| 174 |
+
X: np.ndarray,
|
| 175 |
+
y: np.ndarray,
|
| 176 |
+
feature_names: List[str] = None) -> Dict[str, Any]:
|
| 177 |
+
"""Quantify uncertainty in feature importance rankings"""
|
| 178 |
+
|
| 179 |
+
try:
|
| 180 |
+
# Analyze feature importance stability
|
| 181 |
+
stability_results = self.feature_analyzer.analyze_importance_stability(
|
| 182 |
+
model, X, y, feature_names
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# Extract uncertainty metrics
|
| 186 |
+
feature_uncertainties = {}
|
| 187 |
+
unstable_features = []
|
| 188 |
+
|
| 189 |
+
for feature_name, analysis in stability_results['feature_importance_analysis'].items():
|
| 190 |
+
cv = analysis['metadata']['coefficient_of_variation']
|
| 191 |
+
|
| 192 |
+
feature_uncertainties[feature_name] = {
|
| 193 |
+
'importance_mean': analysis['point_estimate'],
|
| 194 |
+
'importance_ci': analysis['confidence_interval'],
|
| 195 |
+
'coefficient_of_variation': cv,
|
| 196 |
+
'stability_rank': analysis['metadata']['stability_rank'],
|
| 197 |
+
'uncertainty_level': self._classify_feature_uncertainty(cv)
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
# Flag highly uncertain features
|
| 201 |
+
if cv > 0.5: # 50% coefficient of variation threshold
|
| 202 |
+
unstable_features.append({
|
| 203 |
+
'feature': feature_name,
|
| 204 |
+
'cv': cv,
|
| 205 |
+
'reason': 'High variance in importance across bootstrap samples'
|
| 206 |
+
})
|
| 207 |
+
|
| 208 |
+
return {
|
| 209 |
+
'feature_importance_uncertainties': feature_uncertainties,
|
| 210 |
+
'stability_ranking': stability_results['stability_ranking'],
|
| 211 |
+
'unstable_features': unstable_features,
|
| 212 |
+
'uncertainty_summary': {
|
| 213 |
+
'total_features': len(feature_uncertainties),
|
| 214 |
+
'unstable_features_count': len(unstable_features),
|
| 215 |
+
'uncertainty_rate': len(unstable_features) / len(feature_uncertainties) if feature_uncertainties else 0
|
| 216 |
+
},
|
| 217 |
+
'analysis_metadata': stability_results['analysis_metadata']
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
except Exception as e:
|
| 221 |
+
return {'error': str(e)}
|
| 222 |
+
|
| 223 |
+
def quantify_cross_validation_uncertainty(self,
|
| 224 |
+
model,
|
| 225 |
+
X: np.ndarray,
|
| 226 |
+
y: np.ndarray,
|
| 227 |
+
cv_folds: int = 5) -> Dict[str, Any]:
|
| 228 |
+
"""Quantify uncertainty in cross-validation results"""
|
| 229 |
+
|
| 230 |
+
from sklearn.model_selection import cross_val_score, StratifiedKFold
|
| 231 |
+
from sklearn.metrics import f1_score, accuracy_score
|
| 232 |
+
|
| 233 |
+
try:
|
| 234 |
+
# Define CV strategy
|
| 235 |
+
cv_strategy = StratifiedKFold(n_splits=cv_folds, shuffle=True, random_state=self.random_state)
|
| 236 |
+
|
| 237 |
+
# Comprehensive CV analysis with uncertainty quantification
|
| 238 |
+
metrics = {
|
| 239 |
+
'accuracy': lambda y_true, y_pred: accuracy_score(y_true, y_pred),
|
| 240 |
+
'f1': lambda y_true, y_pred: f1_score(y_true, y_pred, average='weighted')
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
cv_analysis = self.statistical_analyzer.cv_analyzer.comprehensive_cv_analysis(
|
| 244 |
+
model, X, y, metrics
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# Extract uncertainty information
|
| 248 |
+
cv_uncertainties = {}
|
| 249 |
+
|
| 250 |
+
for metric_name, analysis in cv_analysis['metrics_analysis'].items():
|
| 251 |
+
test_scores = analysis['test_scores']
|
| 252 |
+
|
| 253 |
+
# Calculate additional uncertainty metrics
|
| 254 |
+
cv_coefficient = test_scores['std'] / test_scores['mean'] if test_scores['mean'] > 0 else np.inf
|
| 255 |
+
|
| 256 |
+
cv_uncertainties[metric_name] = {
|
| 257 |
+
'cv_mean': test_scores['mean'],
|
| 258 |
+
'cv_std': test_scores['std'],
|
| 259 |
+
'cv_scores': test_scores['scores'],
|
| 260 |
+
'coefficient_of_variation': cv_coefficient,
|
| 261 |
+
'confidence_interval': test_scores['confidence_interval'],
|
| 262 |
+
'stability_level': self._classify_cv_stability(cv_coefficient),
|
| 263 |
+
'overfitting_analysis': analysis.get('overfitting_analysis', {}),
|
| 264 |
+
'statistical_tests': analysis.get('statistical_tests', {})
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
return {
|
| 268 |
+
'cv_uncertainties': cv_uncertainties,
|
| 269 |
+
'cv_metadata': {
|
| 270 |
+
'cv_folds': cv_folds,
|
| 271 |
+
'sample_size': len(X),
|
| 272 |
+
'confidence_level': self.confidence_level
|
| 273 |
+
},
|
| 274 |
+
'stability_assessment': self._assess_cv_stability(cv_uncertainties)
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
except Exception as e:
|
| 278 |
+
return {'error': str(e)}
|
| 279 |
+
|
| 280 |
+
def quantify_prediction_uncertainty(self,
|
| 281 |
+
model,
|
| 282 |
+
X_new: np.ndarray,
|
| 283 |
+
n_bootstrap_predictions: int = 100) -> Dict[str, Any]:
|
| 284 |
+
"""Quantify uncertainty in individual predictions using bootstrap"""
|
| 285 |
+
|
| 286 |
+
try:
|
| 287 |
+
# This requires the original training data - simplified version for demonstration
|
| 288 |
+
# In practice, you'd need to store bootstrap models or use other uncertainty methods
|
| 289 |
+
|
| 290 |
+
if hasattr(model, 'predict_proba'):
|
| 291 |
+
# For probabilistic models, use prediction probabilities as uncertainty proxy
|
| 292 |
+
probabilities = model.predict_proba(X_new)
|
| 293 |
+
predictions = model.predict(X_new)
|
| 294 |
+
|
| 295 |
+
# Calculate prediction uncertainty metrics
|
| 296 |
+
prediction_uncertainties = []
|
| 297 |
+
|
| 298 |
+
for i, (pred, proba) in enumerate(zip(predictions, probabilities)):
|
| 299 |
+
max_proba = np.max(proba)
|
| 300 |
+
entropy = -np.sum(proba * np.log(proba + 1e-8)) # Add small constant for numerical stability
|
| 301 |
+
|
| 302 |
+
uncertainty_info = {
|
| 303 |
+
'prediction': int(pred),
|
| 304 |
+
'prediction_probability': float(max_proba),
|
| 305 |
+
'entropy': float(entropy),
|
| 306 |
+
'uncertainty_level': self._classify_prediction_uncertainty(max_proba),
|
| 307 |
+
'all_class_probabilities': proba.tolist()
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
prediction_uncertainties.append(uncertainty_info)
|
| 311 |
+
|
| 312 |
+
# Overall prediction uncertainty summary
|
| 313 |
+
avg_entropy = np.mean([p['entropy'] for p in prediction_uncertainties])
|
| 314 |
+
avg_confidence = np.mean([p['prediction_probability'] for p in prediction_uncertainties])
|
| 315 |
+
|
| 316 |
+
uncertain_predictions = sum(1 for p in prediction_uncertainties if p['uncertainty_level'] in ['high', 'very_high'])
|
| 317 |
+
|
| 318 |
+
return {
|
| 319 |
+
'individual_predictions': prediction_uncertainties,
|
| 320 |
+
'uncertainty_summary': {
|
| 321 |
+
'total_predictions': len(prediction_uncertainties),
|
| 322 |
+
'uncertain_predictions': uncertain_predictions,
|
| 323 |
+
'uncertainty_rate': uncertain_predictions / len(prediction_uncertainties),
|
| 324 |
+
'average_entropy': float(avg_entropy),
|
| 325 |
+
'average_confidence': float(avg_confidence)
|
| 326 |
+
}
|
| 327 |
+
}
|
| 328 |
+
else:
|
| 329 |
+
return {
|
| 330 |
+
'error': 'Model does not support probability predictions - uncertainty quantification limited'
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
except Exception as e:
|
| 334 |
+
return {'error': str(e)}
|
| 335 |
+
|
| 336 |
+
def comprehensive_uncertainty_analysis(self,
|
| 337 |
+
models: Dict[str, Any],
|
| 338 |
+
X_train: np.ndarray,
|
| 339 |
+
X_test: np.ndarray,
|
| 340 |
+
y_train: np.ndarray,
|
| 341 |
+
y_test: np.ndarray,
|
| 342 |
+
feature_names: List[str] = None) -> UncertaintyReport:
|
| 343 |
+
"""Perform comprehensive uncertainty analysis across all components"""
|
| 344 |
+
|
| 345 |
+
# Model performance uncertainty
|
| 346 |
+
model_uncertainties = {}
|
| 347 |
+
for model_name, model in models.items():
|
| 348 |
+
model_uncertainties[model_name] = self.quantify_model_uncertainty(
|
| 349 |
+
model, X_train, X_test, y_train, y_test, model_name
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
# Feature importance uncertainty (using best model)
|
| 353 |
+
best_model_name = min(model_uncertainties.keys(),
|
| 354 |
+
key=lambda k: model_uncertainties[k]['overall_assessment']['average_relative_uncertainty'])
|
| 355 |
+
best_model = models[best_model_name]
|
| 356 |
+
|
| 357 |
+
feature_uncertainty = self.quantify_feature_importance_uncertainty(
|
| 358 |
+
best_model, X_train, y_train, feature_names
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# Cross-validation uncertainty
|
| 362 |
+
cv_uncertainty = self.quantify_cross_validation_uncertainty(
|
| 363 |
+
best_model, X_train, y_train
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
# Prediction uncertainty on test set
|
| 367 |
+
prediction_uncertainty = self.quantify_prediction_uncertainty(
|
| 368 |
+
best_model, X_test
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
# Model comparison uncertainty
|
| 372 |
+
if len(models) > 1:
|
| 373 |
+
comparison_uncertainty = self._quantify_model_comparison_uncertainty(
|
| 374 |
+
models, X_train, y_train
|
| 375 |
+
)
|
| 376 |
+
else:
|
| 377 |
+
comparison_uncertainty = {'single_model': 'No comparison available'}
|
| 378 |
+
|
| 379 |
+
# Generate recommendations
|
| 380 |
+
recommendations = self._generate_uncertainty_recommendations(
|
| 381 |
+
model_uncertainties, feature_uncertainty, cv_uncertainty, prediction_uncertainty
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
return UncertaintyReport(
|
| 385 |
+
model_performance_uncertainty=model_uncertainties,
|
| 386 |
+
feature_importance_uncertainty=feature_uncertainty,
|
| 387 |
+
cross_validation_uncertainty=cv_uncertainty,
|
| 388 |
+
prediction_uncertainty=prediction_uncertainty,
|
| 389 |
+
model_comparison_uncertainty=comparison_uncertainty,
|
| 390 |
+
recommendations=recommendations,
|
| 391 |
+
confidence_level=self.confidence_level,
|
| 392 |
+
analysis_timestamp=datetime.now().isoformat()
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
def _quantify_model_comparison_uncertainty(self,
|
| 396 |
+
models: Dict[str, Any],
|
| 397 |
+
X: np.ndarray,
|
| 398 |
+
y: np.ndarray) -> Dict[str, Any]:
|
| 399 |
+
"""Quantify uncertainty in model comparisons"""
|
| 400 |
+
|
| 401 |
+
try:
|
| 402 |
+
# Use comprehensive model comparison with statistical analysis
|
| 403 |
+
from sklearn.metrics import f1_score, accuracy_score
|
| 404 |
+
|
| 405 |
+
metrics = {
|
| 406 |
+
'f1': lambda y_true, y_pred: f1_score(y_true, y_pred, average='weighted'),
|
| 407 |
+
'accuracy': lambda y_true, y_pred: accuracy_score(y_true, y_pred)
|
| 408 |
+
}
|
| 409 |
+
|
| 410 |
+
comparison_results = self.statistical_analyzer.comparison_analyzer.comprehensive_model_comparison(
|
| 411 |
+
models, X, y, metrics
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
# Extract uncertainty information from comparisons
|
| 415 |
+
comparison_uncertainties = {}
|
| 416 |
+
|
| 417 |
+
for comparison_name, comparison_data in comparison_results.get('pairwise_comparisons', {}).items():
|
| 418 |
+
overall_comp = comparison_data.get('overall_comparison', {})
|
| 419 |
+
|
| 420 |
+
comparison_uncertainties[comparison_name] = {
|
| 421 |
+
'improvement_rate': overall_comp.get('improvement_rate', 0),
|
| 422 |
+
'significant_improvements': overall_comp.get('significant_improvements', 0),
|
| 423 |
+
'total_comparisons': overall_comp.get('total_comparisons', 0),
|
| 424 |
+
'recommendation': overall_comp.get('recommendation', 'No recommendation'),
|
| 425 |
+
'uncertainty_level': self._classify_comparison_uncertainty(overall_comp.get('improvement_rate', 0))
|
| 426 |
+
}
|
| 427 |
+
|
| 428 |
+
# Overall comparison uncertainty
|
| 429 |
+
ranking = comparison_results.get('model_ranking', {})
|
| 430 |
+
ranking_uncertainty = self._assess_ranking_uncertainty(ranking)
|
| 431 |
+
|
| 432 |
+
return {
|
| 433 |
+
'pairwise_comparison_uncertainties': comparison_uncertainties,
|
| 434 |
+
'ranking_uncertainty': ranking_uncertainty,
|
| 435 |
+
'comparison_metadata': comparison_results.get('analysis_metadata', {})
|
| 436 |
+
}
|
| 437 |
+
|
| 438 |
+
except Exception as e:
|
| 439 |
+
return {'error': str(e)}
|
| 440 |
+
|
| 441 |
+
def _classify_uncertainty_level(self, relative_uncertainty: float) -> str:
|
| 442 |
+
"""Classify overall uncertainty level"""
|
| 443 |
+
if relative_uncertainty < 0.05:
|
| 444 |
+
return 'very_low'
|
| 445 |
+
elif relative_uncertainty < 0.1:
|
| 446 |
+
return 'low'
|
| 447 |
+
elif relative_uncertainty < 0.2:
|
| 448 |
+
return 'medium'
|
| 449 |
+
elif relative_uncertainty < 0.5:
|
| 450 |
+
return 'high'
|
| 451 |
+
else:
|
| 452 |
+
return 'very_high'
|
| 453 |
+
|
| 454 |
+
def _classify_feature_uncertainty(self, cv: float) -> str:
|
| 455 |
+
"""Classify feature importance uncertainty"""
|
| 456 |
+
if cv < 0.2:
|
| 457 |
+
return 'stable'
|
| 458 |
+
elif cv < 0.5:
|
| 459 |
+
return 'moderately_stable'
|
| 460 |
+
elif cv < 1.0:
|
| 461 |
+
return 'unstable'
|
| 462 |
+
else:
|
| 463 |
+
return 'very_unstable'
|
| 464 |
+
|
| 465 |
+
def _classify_cv_stability(self, cv_coefficient: float) -> str:
|
| 466 |
+
"""Classify cross-validation stability"""
|
| 467 |
+
if cv_coefficient < 0.1:
|
| 468 |
+
return 'very_stable'
|
| 469 |
+
elif cv_coefficient < 0.2:
|
| 470 |
+
return 'stable'
|
| 471 |
+
elif cv_coefficient < 0.3:
|
| 472 |
+
return 'moderately_stable'
|
| 473 |
+
else:
|
| 474 |
+
return 'unstable'
|
| 475 |
+
|
| 476 |
+
def _classify_prediction_uncertainty(self, max_probability: float) -> str:
|
| 477 |
+
"""Classify individual prediction uncertainty"""
|
| 478 |
+
if max_probability > 0.95:
|
| 479 |
+
return 'very_low'
|
| 480 |
+
elif max_probability > 0.8:
|
| 481 |
+
return 'low'
|
| 482 |
+
elif max_probability > 0.6:
|
| 483 |
+
return 'medium'
|
| 484 |
+
elif max_probability > 0.5:
|
| 485 |
+
return 'high'
|
| 486 |
+
else:
|
| 487 |
+
return 'very_high'
|
| 488 |
+
|
| 489 |
+
def _classify_comparison_uncertainty(self, improvement_rate: float) -> str:
|
| 490 |
+
"""Classify model comparison uncertainty"""
|
| 491 |
+
if improvement_rate > 0.8:
|
| 492 |
+
return 'very_confident'
|
| 493 |
+
elif improvement_rate > 0.6:
|
| 494 |
+
return 'confident'
|
| 495 |
+
elif improvement_rate > 0.4:
|
| 496 |
+
return 'moderate'
|
| 497 |
+
elif improvement_rate > 0.2:
|
| 498 |
+
return 'uncertain'
|
| 499 |
+
else:
|
| 500 |
+
return 'very_uncertain'
|
| 501 |
+
|
| 502 |
+
def _assess_cv_stability(self, cv_uncertainties: Dict[str, Any]) -> Dict[str, Any]:
|
| 503 |
+
"""Assess overall cross-validation stability"""
|
| 504 |
+
|
| 505 |
+
stability_levels = [info.get('stability_level', 'unknown') for info in cv_uncertainties.values()]
|
| 506 |
+
|
| 507 |
+
stable_count = sum(1 for level in stability_levels if level in ['very_stable', 'stable'])
|
| 508 |
+
|
| 509 |
+
return {
|
| 510 |
+
'stable_metrics': stable_count,
|
| 511 |
+
'total_metrics': len(stability_levels),
|
| 512 |
+
'stability_rate': stable_count / len(stability_levels) if stability_levels else 0,
|
| 513 |
+
'overall_stability': 'stable' if stable_count / len(stability_levels) > 0.6 else 'unstable'
|
| 514 |
+
}
|
| 515 |
+
|
| 516 |
+
def _assess_ranking_uncertainty(self, ranking: Dict[str, Any]) -> Dict[str, Any]:
|
| 517 |
+
"""Assess uncertainty in model ranking"""
|
| 518 |
+
|
| 519 |
+
if not ranking or 'ranking' not in ranking:
|
| 520 |
+
return {'uncertainty': 'unknown', 'reason': 'No ranking data available'}
|
| 521 |
+
|
| 522 |
+
ranking_data = ranking['ranking']
|
| 523 |
+
|
| 524 |
+
if len(ranking_data) < 2:
|
| 525 |
+
return {'uncertainty': 'low', 'reason': 'Only one model'}
|
| 526 |
+
|
| 527 |
+
# Check if top model is significantly better than others
|
| 528 |
+
top_model = ranking_data[0]
|
| 529 |
+
significantly_better_count = len(top_model.get('significantly_better_than', []))
|
| 530 |
+
total_other_models = len(ranking_data) - 1
|
| 531 |
+
|
| 532 |
+
if significantly_better_count == total_other_models:
|
| 533 |
+
return {
|
| 534 |
+
'uncertainty': 'low',
|
| 535 |
+
'reason': 'Top model significantly better than all others',
|
| 536 |
+
'confidence': 'high'
|
| 537 |
+
}
|
| 538 |
+
elif significantly_better_count > total_other_models / 2:
|
| 539 |
+
return {
|
| 540 |
+
'uncertainty': 'medium',
|
| 541 |
+
'reason': 'Top model significantly better than some others',
|
| 542 |
+
'confidence': 'medium'
|
| 543 |
+
}
|
| 544 |
+
else:
|
| 545 |
+
return {
|
| 546 |
+
'uncertainty': 'high',
|
| 547 |
+
'reason': 'No clear statistical winner among models',
|
| 548 |
+
'confidence': 'low'
|
| 549 |
+
}
|
| 550 |
+
|
| 551 |
+
def _generate_uncertainty_recommendations(self,
|
| 552 |
+
model_uncertainties: Dict[str, Any],
|
| 553 |
+
feature_uncertainty: Dict[str, Any],
|
| 554 |
+
cv_uncertainty: Dict[str, Any],
|
| 555 |
+
prediction_uncertainty: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 556 |
+
"""Generate actionable recommendations based on uncertainty analysis"""
|
| 557 |
+
|
| 558 |
+
recommendations = []
|
| 559 |
+
|
| 560 |
+
# Model performance uncertainty recommendations
|
| 561 |
+
for model_name, uncertainty in model_uncertainties.items():
|
| 562 |
+
overall_assessment = uncertainty.get('overall_assessment', {})
|
| 563 |
+
uncertainty_level = overall_assessment.get('uncertainty_level', 'unknown')
|
| 564 |
+
|
| 565 |
+
if uncertainty_level in ['high', 'very_high']:
|
| 566 |
+
recommendations.append({
|
| 567 |
+
'type': 'model_performance',
|
| 568 |
+
'priority': 'high',
|
| 569 |
+
'model': model_name,
|
| 570 |
+
'issue': f'High performance uncertainty ({uncertainty_level})',
|
| 571 |
+
'action': 'Collect more training data or consider model regularization',
|
| 572 |
+
'details': {
|
| 573 |
+
'avg_relative_uncertainty': overall_assessment.get('average_relative_uncertainty', 0),
|
| 574 |
+
'max_relative_uncertainty': overall_assessment.get('max_relative_uncertainty', 0)
|
| 575 |
+
}
|
| 576 |
+
})
|
| 577 |
+
|
| 578 |
+
# Feature importance uncertainty recommendations
|
| 579 |
+
unstable_features = feature_uncertainty.get('unstable_features', [])
|
| 580 |
+
if unstable_features:
|
| 581 |
+
recommendations.append({
|
| 582 |
+
'type': 'feature_importance',
|
| 583 |
+
'priority': 'medium',
|
| 584 |
+
'issue': f'{len(unstable_features)} features have unstable importance rankings',
|
| 585 |
+
'action': 'Review feature engineering and consider feature selection',
|
| 586 |
+
'details': {
|
| 587 |
+
'unstable_features': [f['feature'] for f in unstable_features],
|
| 588 |
+
'uncertainty_rate': feature_uncertainty.get('uncertainty_summary', {}).get('uncertainty_rate', 0)
|
| 589 |
+
}
|
| 590 |
+
})
|
| 591 |
+
|
| 592 |
+
# Cross-validation stability recommendations
|
| 593 |
+
cv_stability = cv_uncertainty.get('stability_assessment', {})
|
| 594 |
+
if cv_stability.get('overall_stability') == 'unstable':
|
| 595 |
+
recommendations.append({
|
| 596 |
+
'type': 'cross_validation',
|
| 597 |
+
'priority': 'medium',
|
| 598 |
+
'issue': 'Unstable cross-validation performance',
|
| 599 |
+
'action': 'Check data quality, consider stratified sampling, or increase CV folds',
|
| 600 |
+
'details': {
|
| 601 |
+
'stability_rate': cv_stability.get('stability_rate', 0),
|
| 602 |
+
'stable_metrics': cv_stability.get('stable_metrics', 0),
|
| 603 |
+
'total_metrics': cv_stability.get('total_metrics', 0)
|
| 604 |
+
}
|
| 605 |
+
})
|
| 606 |
+
|
| 607 |
+
# Prediction uncertainty recommendations
|
| 608 |
+
pred_summary = prediction_uncertainty.get('uncertainty_summary', {})
|
| 609 |
+
uncertainty_rate = pred_summary.get('uncertainty_rate', 0)
|
| 610 |
+
|
| 611 |
+
if uncertainty_rate > 0.2: # More than 20% uncertain predictions
|
| 612 |
+
recommendations.append({
|
| 613 |
+
'type': 'prediction_uncertainty',
|
| 614 |
+
'priority': 'high',
|
| 615 |
+
'issue': f'{uncertainty_rate:.1%} of predictions have high uncertainty',
|
| 616 |
+
'action': 'Consider implementing prediction confidence thresholds or human review for uncertain cases',
|
| 617 |
+
'details': {
|
| 618 |
+
'uncertain_predictions': pred_summary.get('uncertain_predictions', 0),
|
| 619 |
+
'total_predictions': pred_summary.get('total_predictions', 0),
|
| 620 |
+
'average_confidence': pred_summary.get('average_confidence', 0)
|
| 621 |
+
}
|
| 622 |
+
})
|
| 623 |
+
|
| 624 |
+
return recommendations
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
# Integration functions for existing codebase
|
| 628 |
+
def integrate_uncertainty_quantification_with_retrain():
|
| 629 |
+
"""Integration function for retrain.py"""
|
| 630 |
+
|
| 631 |
+
def enhanced_model_comparison_with_uncertainty(models_dict, X_train, X_test, y_train, y_test):
|
| 632 |
+
"""Enhanced model comparison with comprehensive uncertainty quantification"""
|
| 633 |
+
|
| 634 |
+
try:
|
| 635 |
+
quantifier = EnhancedUncertaintyQuantifier()
|
| 636 |
+
|
| 637 |
+
# Perform comprehensive uncertainty analysis
|
| 638 |
+
uncertainty_report = quantifier.comprehensive_uncertainty_analysis(
|
| 639 |
+
models_dict, X_train, X_test, y_train, y_test
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
# Save uncertainty report
|
| 643 |
+
report_path = uncertainty_report.save_report()
|
| 644 |
+
|
| 645 |
+
# Extract promotion decision based on uncertainty analysis
|
| 646 |
+
model_uncertainties = uncertainty_report.model_performance_uncertainty
|
| 647 |
+
|
| 648 |
+
# Find model with lowest uncertainty
|
| 649 |
+
best_model_name = min(
|
| 650 |
+
model_uncertainties.keys(),
|
| 651 |
+
key=lambda k: model_uncertainties[k]['overall_assessment']['average_relative_uncertainty']
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
best_uncertainty = model_uncertainties[best_model_name]['overall_assessment']['average_relative_uncertainty']
|
| 655 |
+
uncertainty_level = model_uncertainties[best_model_name]['overall_assessment']['uncertainty_level']
|
| 656 |
+
|
| 657 |
+
# Decision logic incorporating uncertainty
|
| 658 |
+
promote_candidate = (
|
| 659 |
+
uncertainty_level in ['very_low', 'low', 'medium'] and
|
| 660 |
+
len(uncertainty_report.recommendations) <= 2
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
return {
|
| 664 |
+
'recommended_model': best_model_name,
|
| 665 |
+
'uncertainty_level': uncertainty_level,
|
| 666 |
+
'average_uncertainty': best_uncertainty,
|
| 667 |
+
'uncertainty_report': uncertainty_report.to_dict(),
|
| 668 |
+
'report_path': str(report_path),
|
| 669 |
+
'promote_candidate': promote_candidate,
|
| 670 |
+
'recommendations': uncertainty_report.recommendations
|
| 671 |
+
}
|
| 672 |
+
|
| 673 |
+
except Exception as e:
|
| 674 |
+
return {'error': f'Uncertainty quantification failed: {str(e)}'}
|
| 675 |
+
|
| 676 |
+
return enhanced_model_comparison_with_uncertainty
|
| 677 |
+
|
| 678 |
+
def integrate_uncertainty_quantification_with_train():
|
| 679 |
+
"""Integration function for train.py"""
|
| 680 |
+
|
| 681 |
+
def enhanced_ensemble_validation_with_uncertainty(individual_models, ensemble_model, X, y):
|
| 682 |
+
"""Enhanced ensemble validation with uncertainty quantification"""
|
| 683 |
+
|
| 684 |
+
try:
|
| 685 |
+
from sklearn.model_selection import train_test_split
|
| 686 |
+
|
| 687 |
+
quantifier = EnhancedUncertaintyQuantifier()
|
| 688 |
+
|
| 689 |
+
# Prepare models for analysis
|
| 690 |
+
models_to_analyze = {**individual_models, 'ensemble': ensemble_model}
|
| 691 |
+
|
| 692 |
+
# Split data for uncertainty analysis
|
| 693 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 694 |
+
|
| 695 |
+
# Perform uncertainty analysis
|
| 696 |
+
uncertainty_report = quantifier.comprehensive_uncertainty_analysis(
|
| 697 |
+
models_to_analyze, X_train, X_test, y_train, y_test
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
# Determine ensemble recommendation based on uncertainty
|
| 701 |
+
ensemble_uncertainty = uncertainty_report.model_performance_uncertainty.get('ensemble', {})
|
| 702 |
+
ensemble_uncertainty_level = ensemble_uncertainty.get('overall_assessment', {}).get('uncertainty_level', 'unknown')
|
| 703 |
+
|
| 704 |
+
# Compare ensemble uncertainty with individual models
|
| 705 |
+
individual_uncertainties = [
|
| 706 |
+
uncertainty_report.model_performance_uncertainty[name]['overall_assessment']['average_relative_uncertainty']
|
| 707 |
+
for name in individual_models.keys()
|
| 708 |
+
if name in uncertainty_report.model_performance_uncertainty
|
| 709 |
+
]
|
| 710 |
+
|
| 711 |
+
ensemble_avg_uncertainty = ensemble_uncertainty.get('overall_assessment', {}).get('average_relative_uncertainty', np.inf)
|
| 712 |
+
best_individual_uncertainty = min(individual_uncertainties) if individual_uncertainties else np.inf
|
| 713 |
+
|
| 714 |
+
# Decision logic
|
| 715 |
+
use_ensemble = (
|
| 716 |
+
ensemble_uncertainty_level in ['very_low', 'low', 'medium'] and
|
| 717 |
+
ensemble_avg_uncertainty <= best_individual_uncertainty * 1.1 # Allow 10% increase in uncertainty
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
return {
|
| 721 |
+
'use_ensemble': use_ensemble,
|
| 722 |
+
'ensemble_uncertainty_level': ensemble_uncertainty_level,
|
| 723 |
+
'ensemble_avg_uncertainty': ensemble_avg_uncertainty,
|
| 724 |
+
'best_individual_uncertainty': best_individual_uncertainty,
|
| 725 |
+
'uncertainty_analysis': uncertainty_report.to_dict(),
|
| 726 |
+
'recommendations': uncertainty_report.recommendations
|
| 727 |
+
}
|
| 728 |
+
|
| 729 |
+
except Exception as e:
|
| 730 |
+
return {'error': f'Uncertainty quantification failed: {str(e)}'}
|
| 731 |
+
|
| 732 |
+
return enhanced_ensemble_validation_with_uncertainty
|
| 733 |
+
|
| 734 |
+
|
| 735 |
+
if __name__ == "__main__":
|
| 736 |
+
# Example usage and testing
|
| 737 |
+
print("Testing enhanced uncertainty quantification system...")
|
| 738 |
+
|
| 739 |
+
# Generate sample data
|
| 740 |
+
np.random.seed(42)
|
| 741 |
+
X = np.random.randn(300, 15)
|
| 742 |
+
y = (X[:, 0] + X[:, 1] + np.random.randn(300) * 0.2 > 0).astype(int)
|
| 743 |
+
|
| 744 |
+
# Create sample models
|
| 745 |
+
from sklearn.linear_model import LogisticRegression
|
| 746 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 747 |
+
from sklearn.model_selection import train_test_split
|
| 748 |
+
|
| 749 |
+
models = {
|
| 750 |
+
'logistic_regression': LogisticRegression(random_state=42),
|
| 751 |
+
'random_forest': RandomForestClassifier(n_estimators=50, random_state=42)
|
| 752 |
+
}
|
| 753 |
+
|
| 754 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
| 755 |
+
|
| 756 |
+
# Test comprehensive uncertainty analysis
|
| 757 |
+
if STATISTICAL_ANALYSIS_AVAILABLE:
|
| 758 |
+
quantifier = EnhancedUncertaintyQuantifier(n_bootstrap=100) # Reduced for testing
|
| 759 |
+
|
| 760 |
+
print("Running comprehensive uncertainty analysis...")
|
| 761 |
+
uncertainty_report = quantifier.comprehensive_uncertainty_analysis(
|
| 762 |
+
models, X_train, X_test, y_train, y_test
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
print(f"Generated {len(uncertainty_report.recommendations)} uncertainty-based recommendations")
|
| 766 |
+
print(f"Overall confidence level: {uncertainty_report.confidence_level}")
|
| 767 |
+
|
| 768 |
+
# Save report
|
| 769 |
+
report_path = uncertainty_report.save_report()
|
| 770 |
+
print(f"Uncertainty report saved to: {report_path}")
|
| 771 |
+
|
| 772 |
+
print("Enhanced uncertainty quantification system test completed successfully!")
|
| 773 |
+
|
| 774 |
+
else:
|
| 775 |
+
print("Statistical analysis components not available - skipping test")
|