Commit
·
291cac4
1
Parent(s):
0591093
Create model_registry.py
Browse filesAdding Blue-Green Deployment Strategy
- deployment/model_registry.py +671 -0
deployment/model_registry.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import joblib
|
3 |
+
import logging
|
4 |
+
import hashlib
|
5 |
+
from enum import Enum
|
6 |
+
from pathlib import Path
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
from typing import Dict, List, Optional, Any, Tuple
|
9 |
+
from dataclasses import dataclass, asdict
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
class ModelStatus(Enum):
|
15 |
+
TRAINING = "training"
|
16 |
+
VALIDATING = "validating"
|
17 |
+
STAGED = "staged"
|
18 |
+
ACTIVE = "active"
|
19 |
+
RETIRED = "retired"
|
20 |
+
FAILED = "failed"
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class ModelMetadata:
|
24 |
+
"""Comprehensive model metadata"""
|
25 |
+
version_id: str
|
26 |
+
name: str
|
27 |
+
description: str
|
28 |
+
created_at: str
|
29 |
+
created_by: str
|
30 |
+
status: str
|
31 |
+
|
32 |
+
# Model files
|
33 |
+
model_path: str
|
34 |
+
vectorizer_path: str
|
35 |
+
pipeline_path: Optional[str]
|
36 |
+
|
37 |
+
# Performance metrics
|
38 |
+
training_metrics: Dict[str, float]
|
39 |
+
validation_metrics: Dict[str, float]
|
40 |
+
cross_validation_results: Dict[str, Any]
|
41 |
+
|
42 |
+
# Training details
|
43 |
+
training_config: Dict[str, Any]
|
44 |
+
dataset_info: Dict[str, Any]
|
45 |
+
feature_info: Dict[str, Any]
|
46 |
+
|
47 |
+
# Deployment info
|
48 |
+
deployment_history: List[Dict[str, Any]]
|
49 |
+
performance_history: List[Dict[str, Any]]
|
50 |
+
|
51 |
+
# Model signature
|
52 |
+
model_signature: str
|
53 |
+
dependencies: Dict[str, str]
|
54 |
+
|
55 |
+
# Tags and labels
|
56 |
+
tags: List[str]
|
57 |
+
labels: Dict[str, str]
|
58 |
+
|
59 |
+
class ModelRegistry:
|
60 |
+
"""Central registry for managing model versions and metadata"""
|
61 |
+
|
62 |
+
def __init__(self, base_dir: Path = None):
|
63 |
+
self.base_dir = base_dir or Path("/tmp")
|
64 |
+
self.setup_registry_paths()
|
65 |
+
self.setup_registry_config()
|
66 |
+
|
67 |
+
# Model storage
|
68 |
+
self.models = {} # version_id -> ModelMetadata
|
69 |
+
self.load_registry()
|
70 |
+
|
71 |
+
def setup_registry_paths(self):
|
72 |
+
"""Setup model registry paths"""
|
73 |
+
self.registry_dir = self.base_dir / "registry"
|
74 |
+
self.registry_dir.mkdir(parents=True, exist_ok=True)
|
75 |
+
|
76 |
+
# Registry files
|
77 |
+
self.registry_index_path = self.registry_dir / "model_index.json"
|
78 |
+
self.registry_metadata_path = self.registry_dir / "registry_metadata.json"
|
79 |
+
self.registry_log_path = self.registry_dir / "registry_log.json"
|
80 |
+
|
81 |
+
# Model storage directory
|
82 |
+
self.models_storage_dir = self.registry_dir / "models"
|
83 |
+
self.models_storage_dir.mkdir(parents=True, exist_ok=True)
|
84 |
+
|
85 |
+
def setup_registry_config(self):
|
86 |
+
"""Setup registry configuration"""
|
87 |
+
self.registry_config = {
|
88 |
+
'max_versions_per_model': 10,
|
89 |
+
'auto_cleanup_enabled': True,
|
90 |
+
'cleanup_after_days': 30,
|
91 |
+
'backup_enabled': True,
|
92 |
+
'backup_interval_hours': 24,
|
93 |
+
'validation_required': True,
|
94 |
+
'signature_verification': True
|
95 |
+
}
|
96 |
+
|
97 |
+
def register_model(self, model_path: str, vectorizer_path: str,
|
98 |
+
metadata: Dict[str, Any], version_id: str = None) -> str:
|
99 |
+
"""Register a new model version"""
|
100 |
+
try:
|
101 |
+
# Generate version ID if not provided
|
102 |
+
if not version_id:
|
103 |
+
version_id = f"v{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
104 |
+
|
105 |
+
# Validate model files exist
|
106 |
+
if not Path(model_path).exists():
|
107 |
+
raise FileNotFoundError(f"Model file not found: {model_path}")
|
108 |
+
if not Path(vectorizer_path).exists():
|
109 |
+
raise FileNotFoundError(f"Vectorizer file not found: {vectorizer_path}")
|
110 |
+
|
111 |
+
# Create model storage directory
|
112 |
+
model_storage_dir = self.models_storage_dir / version_id
|
113 |
+
model_storage_dir.mkdir(parents=True, exist_ok=True)
|
114 |
+
|
115 |
+
# Copy model files to registry storage
|
116 |
+
import shutil
|
117 |
+
registry_model_path = model_storage_dir / "model.pkl"
|
118 |
+
registry_vectorizer_path = model_storage_dir / "vectorizer.pkl"
|
119 |
+
|
120 |
+
shutil.copy2(model_path, registry_model_path)
|
121 |
+
shutil.copy2(vectorizer_path, registry_vectorizer_path)
|
122 |
+
|
123 |
+
# Generate model signature
|
124 |
+
model_signature = self.generate_model_signature(registry_model_path, registry_vectorizer_path)
|
125 |
+
|
126 |
+
# Create comprehensive metadata
|
127 |
+
model_metadata = ModelMetadata(
|
128 |
+
version_id=version_id,
|
129 |
+
name=metadata.get('name', f'model_{version_id}'),
|
130 |
+
description=metadata.get('description', 'No description provided'),
|
131 |
+
created_at=datetime.now().isoformat(),
|
132 |
+
created_by=metadata.get('created_by', 'system'),
|
133 |
+
status=ModelStatus.VALIDATING.value,
|
134 |
+
|
135 |
+
# File paths
|
136 |
+
model_path=str(registry_model_path),
|
137 |
+
vectorizer_path=str(registry_vectorizer_path),
|
138 |
+
pipeline_path=metadata.get('pipeline_path'),
|
139 |
+
|
140 |
+
# Performance metrics
|
141 |
+
training_metrics=metadata.get('training_metrics', {}),
|
142 |
+
validation_metrics=metadata.get('validation_metrics', {}),
|
143 |
+
cross_validation_results=metadata.get('cross_validation_results', {}),
|
144 |
+
|
145 |
+
# Training details
|
146 |
+
training_config=metadata.get('training_config', {}),
|
147 |
+
dataset_info=metadata.get('dataset_info', {}),
|
148 |
+
feature_info=metadata.get('feature_info', {}),
|
149 |
+
|
150 |
+
# Deployment info
|
151 |
+
deployment_history=[],
|
152 |
+
performance_history=[],
|
153 |
+
|
154 |
+
# Model signature
|
155 |
+
model_signature=model_signature,
|
156 |
+
dependencies=metadata.get('dependencies', {}),
|
157 |
+
|
158 |
+
# Tags and labels
|
159 |
+
tags=metadata.get('tags', []),
|
160 |
+
labels=metadata.get('labels', {})
|
161 |
+
)
|
162 |
+
|
163 |
+
# Validate model if required
|
164 |
+
if self.registry_config['validation_required']:
|
165 |
+
validation_result = self.validate_model(model_metadata)
|
166 |
+
if not validation_result['valid']:
|
167 |
+
model_metadata.status = ModelStatus.FAILED.value
|
168 |
+
self.log_registry_event("model_validation_failed",
|
169 |
+
f"Model validation failed: {validation_result['errors']}")
|
170 |
+
else:
|
171 |
+
model_metadata.status = ModelStatus.STAGED.value
|
172 |
+
else:
|
173 |
+
model_metadata.status = ModelStatus.STAGED.value
|
174 |
+
|
175 |
+
# Save metadata to file
|
176 |
+
metadata_file = model_storage_dir / "metadata.json"
|
177 |
+
with open(metadata_file, 'w') as f:
|
178 |
+
json.dump(asdict(model_metadata), f, indent=2)
|
179 |
+
|
180 |
+
# Register in memory
|
181 |
+
self.models[version_id] = model_metadata
|
182 |
+
|
183 |
+
# Update registry index
|
184 |
+
self.update_registry_index()
|
185 |
+
|
186 |
+
# Log registration
|
187 |
+
self.log_registry_event("model_registered", f"Registered model version {version_id}", {
|
188 |
+
'version_id': version_id,
|
189 |
+
'model_signature': model_signature,
|
190 |
+
'status': model_metadata.status
|
191 |
+
})
|
192 |
+
|
193 |
+
logger.info(f"Successfully registered model version: {version_id}")
|
194 |
+
return version_id
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
logger.error(f"Failed to register model: {e}")
|
198 |
+
raise e
|
199 |
+
|
200 |
+
def get_model(self, version_id: str) -> Optional[ModelMetadata]:
|
201 |
+
"""Get model metadata by version ID"""
|
202 |
+
return self.models.get(version_id)
|
203 |
+
|
204 |
+
def get_active_model(self) -> Optional[ModelMetadata]:
|
205 |
+
"""Get currently active model"""
|
206 |
+
for model in self.models.values():
|
207 |
+
if model.status == ModelStatus.ACTIVE.value:
|
208 |
+
return model
|
209 |
+
return None
|
210 |
+
|
211 |
+
def list_models(self, status: str = None, limit: int = None) -> List[ModelMetadata]:
|
212 |
+
"""List models with optional filtering"""
|
213 |
+
models = list(self.models.values())
|
214 |
+
|
215 |
+
# Filter by status
|
216 |
+
if status:
|
217 |
+
models = [m for m in models if m.status == status]
|
218 |
+
|
219 |
+
# Sort by creation date (newest first)
|
220 |
+
models.sort(key=lambda x: x.created_at, reverse=True)
|
221 |
+
|
222 |
+
# Apply limit
|
223 |
+
if limit:
|
224 |
+
models = models[:limit]
|
225 |
+
|
226 |
+
return models
|
227 |
+
|
228 |
+
def promote_model(self, version_id: str) -> bool:
|
229 |
+
"""Promote a model to active status"""
|
230 |
+
try:
|
231 |
+
model = self.get_model(version_id)
|
232 |
+
if not model:
|
233 |
+
raise ValueError(f"Model {version_id} not found")
|
234 |
+
|
235 |
+
if model.status != ModelStatus.STAGED.value:
|
236 |
+
raise ValueError(f"Model {version_id} is not staged for promotion")
|
237 |
+
|
238 |
+
# Demote current active model
|
239 |
+
current_active = self.get_active_model()
|
240 |
+
if current_active:
|
241 |
+
current_active.status = ModelStatus.RETIRED.value
|
242 |
+
self.log_registry_event("model_retired", f"Retired model {current_active.version_id}")
|
243 |
+
|
244 |
+
# Promote new model
|
245 |
+
model.status = ModelStatus.ACTIVE.value
|
246 |
+
|
247 |
+
# Record deployment
|
248 |
+
deployment_record = {
|
249 |
+
'promoted_at': datetime.now().isoformat(),
|
250 |
+
'promoted_by': 'system',
|
251 |
+
'previous_active': current_active.version_id if current_active else None
|
252 |
+
}
|
253 |
+
model.deployment_history.append(deployment_record)
|
254 |
+
|
255 |
+
# Update registry
|
256 |
+
self.update_registry_index()
|
257 |
+
self.save_model_metadata(model)
|
258 |
+
|
259 |
+
self.log_registry_event("model_promoted", f"Promoted model {version_id} to active", {
|
260 |
+
'version_id': version_id,
|
261 |
+
'previous_active': current_active.version_id if current_active else None
|
262 |
+
})
|
263 |
+
|
264 |
+
logger.info(f"Successfully promoted model {version_id} to active")
|
265 |
+
return True
|
266 |
+
|
267 |
+
except Exception as e:
|
268 |
+
logger.error(f"Failed to promote model {version_id}: {e}")
|
269 |
+
return False
|
270 |
+
|
271 |
+
def retire_model(self, version_id: str) -> bool:
|
272 |
+
"""Retire a model version"""
|
273 |
+
try:
|
274 |
+
model = self.get_model(version_id)
|
275 |
+
if not model:
|
276 |
+
raise ValueError(f"Model {version_id} not found")
|
277 |
+
|
278 |
+
old_status = model.status
|
279 |
+
model.status = ModelStatus.RETIRED.value
|
280 |
+
|
281 |
+
# Update registry
|
282 |
+
self.update_registry_index()
|
283 |
+
self.save_model_metadata(model)
|
284 |
+
|
285 |
+
self.log_registry_event("model_retired", f"Retired model {version_id}", {
|
286 |
+
'version_id': version_id,
|
287 |
+
'previous_status': old_status
|
288 |
+
})
|
289 |
+
|
290 |
+
logger.info(f"Successfully retired model {version_id}")
|
291 |
+
return True
|
292 |
+
|
293 |
+
except Exception as e:
|
294 |
+
logger.error(f"Failed to retire model {version_id}: {e}")
|
295 |
+
return False
|
296 |
+
|
297 |
+
def delete_model(self, version_id: str, force: bool = False) -> bool:
|
298 |
+
"""Delete a model version"""
|
299 |
+
try:
|
300 |
+
model = self.get_model(version_id)
|
301 |
+
if not model:
|
302 |
+
raise ValueError(f"Model {version_id} not found")
|
303 |
+
|
304 |
+
# Prevent deletion of active model unless forced
|
305 |
+
if model.status == ModelStatus.ACTIVE.value and not force:
|
306 |
+
raise ValueError("Cannot delete active model without force=True")
|
307 |
+
|
308 |
+
# Remove from memory
|
309 |
+
del self.models[version_id]
|
310 |
+
|
311 |
+
# Remove model storage directory
|
312 |
+
model_storage_dir = self.models_storage_dir / version_id
|
313 |
+
if model_storage_dir.exists():
|
314 |
+
import shutil
|
315 |
+
shutil.rmtree(model_storage_dir)
|
316 |
+
|
317 |
+
# Update registry index
|
318 |
+
self.update_registry_index()
|
319 |
+
|
320 |
+
self.log_registry_event("model_deleted", f"Deleted model {version_id}", {
|
321 |
+
'version_id': version_id,
|
322 |
+
'forced': force
|
323 |
+
})
|
324 |
+
|
325 |
+
logger.info(f"Successfully deleted model {version_id}")
|
326 |
+
return True
|
327 |
+
|
328 |
+
except Exception as e:
|
329 |
+
logger.error(f"Failed to delete model {version_id}: {e}")
|
330 |
+
return False
|
331 |
+
|
332 |
+
def validate_model(self, model_metadata: ModelMetadata) -> Dict[str, Any]:
|
333 |
+
"""Validate a registered model"""
|
334 |
+
validation_result = {
|
335 |
+
'valid': True,
|
336 |
+
'errors': [],
|
337 |
+
'warnings': []
|
338 |
+
}
|
339 |
+
|
340 |
+
try:
|
341 |
+
# Check if model files exist
|
342 |
+
if not Path(model_metadata.model_path).exists():
|
343 |
+
validation_result['errors'].append("Model file not found")
|
344 |
+
validation_result['valid'] = False
|
345 |
+
|
346 |
+
if not Path(model_metadata.vectorizer_path).exists():
|
347 |
+
validation_result['errors'].append("Vectorizer file not found")
|
348 |
+
validation_result['valid'] = False
|
349 |
+
|
350 |
+
# Try to load model
|
351 |
+
try:
|
352 |
+
model = joblib.load(model_metadata.model_path)
|
353 |
+
vectorizer = joblib.load(model_metadata.vectorizer_path)
|
354 |
+
|
355 |
+
# Check if model has required methods
|
356 |
+
if not hasattr(model, 'predict'):
|
357 |
+
validation_result['errors'].append("Model missing predict method")
|
358 |
+
validation_result['valid'] = False
|
359 |
+
|
360 |
+
if not hasattr(vectorizer, 'transform'):
|
361 |
+
validation_result['errors'].append("Vectorizer missing transform method")
|
362 |
+
validation_result['valid'] = False
|
363 |
+
|
364 |
+
# Test prediction with dummy data
|
365 |
+
try:
|
366 |
+
test_text = ["This is a test article for validation"]
|
367 |
+
X = vectorizer.transform(test_text)
|
368 |
+
prediction = model.predict(X)
|
369 |
+
|
370 |
+
if hasattr(model, 'predict_proba'):
|
371 |
+
probabilities = model.predict_proba(X)
|
372 |
+
except Exception as e:
|
373 |
+
validation_result['errors'].append(f"Model prediction test failed: {str(e)}")
|
374 |
+
validation_result['valid'] = False
|
375 |
+
|
376 |
+
except Exception as e:
|
377 |
+
validation_result['errors'].append(f"Failed to load model: {str(e)}")
|
378 |
+
validation_result['valid'] = False
|
379 |
+
|
380 |
+
# Check performance metrics
|
381 |
+
if not model_metadata.training_metrics:
|
382 |
+
validation_result['warnings'].append("No training metrics available")
|
383 |
+
|
384 |
+
# Verify signature if enabled
|
385 |
+
if self.registry_config['signature_verification']:
|
386 |
+
current_signature = self.generate_model_signature(
|
387 |
+
model_metadata.model_path,
|
388 |
+
model_metadata.vectorizer_path
|
389 |
+
)
|
390 |
+
if current_signature != model_metadata.model_signature:
|
391 |
+
validation_result['errors'].append("Model signature verification failed")
|
392 |
+
validation_result['valid'] = False
|
393 |
+
|
394 |
+
except Exception as e:
|
395 |
+
validation_result['errors'].append(f"Validation error: {str(e)}")
|
396 |
+
validation_result['valid'] = False
|
397 |
+
|
398 |
+
return validation_result
|
399 |
+
|
400 |
+
def generate_model_signature(self, model_path: str, vectorizer_path: str) -> str:
|
401 |
+
"""Generate a signature for model files"""
|
402 |
+
try:
|
403 |
+
hasher = hashlib.sha256()
|
404 |
+
|
405 |
+
# Hash model file
|
406 |
+
with open(model_path, 'rb') as f:
|
407 |
+
for chunk in iter(lambda: f.read(4096), b""):
|
408 |
+
hasher.update(chunk)
|
409 |
+
|
410 |
+
# Hash vectorizer file
|
411 |
+
with open(vectorizer_path, 'rb') as f:
|
412 |
+
for chunk in iter(lambda: f.read(4096), b""):
|
413 |
+
hasher.update(chunk)
|
414 |
+
|
415 |
+
return hasher.hexdigest()
|
416 |
+
|
417 |
+
except Exception as e:
|
418 |
+
logger.error(f"Failed to generate model signature: {e}")
|
419 |
+
return ""
|
420 |
+
|
421 |
+
def record_performance(self, version_id: str, performance_metrics: Dict[str, float]):
|
422 |
+
"""Record performance metrics for a model"""
|
423 |
+
try:
|
424 |
+
model = self.get_model(version_id)
|
425 |
+
if not model:
|
426 |
+
raise ValueError(f"Model {version_id} not found")
|
427 |
+
|
428 |
+
performance_record = {
|
429 |
+
'timestamp': datetime.now().isoformat(),
|
430 |
+
'metrics': performance_metrics
|
431 |
+
}
|
432 |
+
|
433 |
+
model.performance_history.append(performance_record)
|
434 |
+
|
435 |
+
# Keep only last 100 performance records
|
436 |
+
if len(model.performance_history) > 100:
|
437 |
+
model.performance_history = model.performance_history[-100:]
|
438 |
+
|
439 |
+
# Save updated metadata
|
440 |
+
self.save_model_metadata(model)
|
441 |
+
|
442 |
+
logger.info(f"Recorded performance for model {version_id}")
|
443 |
+
|
444 |
+
except Exception as e:
|
445 |
+
logger.error(f"Failed to record performance for model {version_id}: {e}")
|
446 |
+
|
447 |
+
def get_model_comparison(self, version_id1: str, version_id2: str) -> Dict[str, Any]:
|
448 |
+
"""Compare two model versions"""
|
449 |
+
try:
|
450 |
+
model1 = self.get_model(version_id1)
|
451 |
+
model2 = self.get_model(version_id2)
|
452 |
+
|
453 |
+
if not model1 or not model2:
|
454 |
+
raise ValueError("One or both models not found")
|
455 |
+
|
456 |
+
comparison = {
|
457 |
+
'model1': {
|
458 |
+
'version_id': model1.version_id,
|
459 |
+
'created_at': model1.created_at,
|
460 |
+
'status': model1.status,
|
461 |
+
'training_metrics': model1.training_metrics,
|
462 |
+
'validation_metrics': model1.validation_metrics
|
463 |
+
},
|
464 |
+
'model2': {
|
465 |
+
'version_id': model2.version_id,
|
466 |
+
'created_at': model2.created_at,
|
467 |
+
'status': model2.status,
|
468 |
+
'training_metrics': model2.training_metrics,
|
469 |
+
'validation_metrics': model2.validation_metrics
|
470 |
+
},
|
471 |
+
'comparison_timestamp': datetime.now().isoformat()
|
472 |
+
}
|
473 |
+
|
474 |
+
# Calculate metric differences
|
475 |
+
metric_diffs = {}
|
476 |
+
for metric in model1.training_metrics:
|
477 |
+
if metric in model2.training_metrics:
|
478 |
+
diff = model2.training_metrics[metric] - model1.training_metrics[metric]
|
479 |
+
metric_diffs[metric] = {
|
480 |
+
'difference': diff,
|
481 |
+
'improvement': diff > 0,
|
482 |
+
'percentage_change': (diff / model1.training_metrics[metric]) * 100 if model1.training_metrics[metric] != 0 else 0
|
483 |
+
}
|
484 |
+
|
485 |
+
comparison['metric_differences'] = metric_diffs
|
486 |
+
|
487 |
+
return comparison
|
488 |
+
|
489 |
+
except Exception as e:
|
490 |
+
logger.error(f"Failed to compare models: {e}")
|
491 |
+
return {'error': str(e)}
|
492 |
+
|
493 |
+
def cleanup_old_models(self):
|
494 |
+
"""Clean up old retired models"""
|
495 |
+
try:
|
496 |
+
if not self.registry_config['auto_cleanup_enabled']:
|
497 |
+
return
|
498 |
+
|
499 |
+
cleanup_date = datetime.now() - timedelta(days=self.registry_config['cleanup_after_days'])
|
500 |
+
|
501 |
+
models_to_cleanup = []
|
502 |
+
for model in self.models.values():
|
503 |
+
if (model.status == ModelStatus.RETIRED.value and
|
504 |
+
datetime.fromisoformat(model.created_at) < cleanup_date):
|
505 |
+
models_to_cleanup.append(model.version_id)
|
506 |
+
|
507 |
+
for version_id in models_to_cleanup:
|
508 |
+
self.delete_model(version_id, force=True)
|
509 |
+
logger.info(f"Cleaned up old model: {version_id}")
|
510 |
+
|
511 |
+
except Exception as e:
|
512 |
+
logger.error(f"Failed to cleanup old models: {e}")
|
513 |
+
|
514 |
+
def update_registry_index(self):
|
515 |
+
"""Update the registry index file"""
|
516 |
+
try:
|
517 |
+
index = {
|
518 |
+
'last_updated': datetime.now().isoformat(),
|
519 |
+
'total_models': len(self.models),
|
520 |
+
'models_by_status': {},
|
521 |
+
'model_versions': []
|
522 |
+
}
|
523 |
+
|
524 |
+
# Count models by status
|
525 |
+
for model in self.models.values():
|
526 |
+
status = model.status
|
527 |
+
index['models_by_status'][status] = index['models_by_status'].get(status, 0) + 1
|
528 |
+
|
529 |
+
# Add model summaries
|
530 |
+
for model in self.models.values():
|
531 |
+
index['model_versions'].append({
|
532 |
+
'version_id': model.version_id,
|
533 |
+
'name': model.name,
|
534 |
+
'status': model.status,
|
535 |
+
'created_at': model.created_at,
|
536 |
+
'signature': model.model_signature
|
537 |
+
})
|
538 |
+
|
539 |
+
# Save index
|
540 |
+
with open(self.registry_index_path, 'w') as f:
|
541 |
+
json.dump(index, f, indent=2)
|
542 |
+
|
543 |
+
except Exception as e:
|
544 |
+
logger.error(f"Failed to update registry index: {e}")
|
545 |
+
|
546 |
+
def save_model_metadata(self, model: ModelMetadata):
|
547 |
+
"""Save model metadata to file"""
|
548 |
+
try:
|
549 |
+
model_storage_dir = self.models_storage_dir / model.version_id
|
550 |
+
metadata_file = model_storage_dir / "metadata.json"
|
551 |
+
|
552 |
+
with open(metadata_file, 'w') as f:
|
553 |
+
json.dump(asdict(model), f, indent=2)
|
554 |
+
|
555 |
+
except Exception as e:
|
556 |
+
logger.error(f"Failed to save model metadata: {e}")
|
557 |
+
|
558 |
+
def load_registry(self):
|
559 |
+
"""Load registry from storage"""
|
560 |
+
try:
|
561 |
+
# Load from individual model metadata files
|
562 |
+
if self.models_storage_dir.exists():
|
563 |
+
for model_dir in self.models_storage_dir.iterdir():
|
564 |
+
if model_dir.is_dir():
|
565 |
+
metadata_file = model_dir / "metadata.json"
|
566 |
+
if metadata_file.exists():
|
567 |
+
try:
|
568 |
+
with open(metadata_file, 'r') as f:
|
569 |
+
metadata_dict = json.load(f)
|
570 |
+
|
571 |
+
model_metadata = ModelMetadata(**metadata_dict)
|
572 |
+
self.models[model_metadata.version_id] = model_metadata
|
573 |
+
|
574 |
+
except Exception as e:
|
575 |
+
logger.warning(f"Failed to load model metadata from {metadata_file}: {e}")
|
576 |
+
|
577 |
+
logger.info(f"Loaded {len(self.models)} models from registry")
|
578 |
+
|
579 |
+
except Exception as e:
|
580 |
+
logger.error(f"Failed to load registry: {e}")
|
581 |
+
|
582 |
+
def log_registry_event(self, event: str, message: str, details: Dict = None):
|
583 |
+
"""Log registry events"""
|
584 |
+
try:
|
585 |
+
log_entry = {
|
586 |
+
'timestamp': datetime.now().isoformat(),
|
587 |
+
'event': event,
|
588 |
+
'message': message,
|
589 |
+
'details': details or {}
|
590 |
+
}
|
591 |
+
|
592 |
+
# Load existing logs
|
593 |
+
logs = []
|
594 |
+
if self.registry_log_path.exists():
|
595 |
+
try:
|
596 |
+
with open(self.registry_log_path, 'r') as f:
|
597 |
+
logs = json.load(f)
|
598 |
+
except:
|
599 |
+
logs = []
|
600 |
+
|
601 |
+
logs.append(log_entry)
|
602 |
+
|
603 |
+
# Keep only last 1000 entries
|
604 |
+
if len(logs) > 1000:
|
605 |
+
logs = logs[-1000:]
|
606 |
+
|
607 |
+
# Save logs
|
608 |
+
with open(self.registry_log_path, 'w') as f:
|
609 |
+
json.dump(logs, f, indent=2)
|
610 |
+
|
611 |
+
except Exception as e:
|
612 |
+
logger.error(f"Failed to log registry event: {e}")
|
613 |
+
|
614 |
+
def get_registry_stats(self) -> Dict[str, Any]:
|
615 |
+
"""Get registry statistics"""
|
616 |
+
try:
|
617 |
+
stats = {
|
618 |
+
'total_models': len(self.models),
|
619 |
+
'models_by_status': {},
|
620 |
+
'active_model': None,
|
621 |
+
'latest_model': None,
|
622 |
+
'storage_info': {},
|
623 |
+
'recent_activity': []
|
624 |
+
}
|
625 |
+
|
626 |
+
# Count by status
|
627 |
+
for model in self.models.values():
|
628 |
+
status = model.status
|
629 |
+
stats['models_by_status'][status] = stats['models_by_status'].get(status, 0) + 1
|
630 |
+
|
631 |
+
# Get active model
|
632 |
+
active_model = self.get_active_model()
|
633 |
+
if active_model:
|
634 |
+
stats['active_model'] = {
|
635 |
+
'version_id': active_model.version_id,
|
636 |
+
'created_at': active_model.created_at,
|
637 |
+
'training_metrics': active_model.training_metrics
|
638 |
+
}
|
639 |
+
|
640 |
+
# Get latest model
|
641 |
+
models_by_date = sorted(self.models.values(), key=lambda x: x.created_at, reverse=True)
|
642 |
+
if models_by_date:
|
643 |
+
latest = models_by_date[0]
|
644 |
+
stats['latest_model'] = {
|
645 |
+
'version_id': latest.version_id,
|
646 |
+
'created_at': latest.created_at,
|
647 |
+
'status': latest.status
|
648 |
+
}
|
649 |
+
|
650 |
+
# Storage information
|
651 |
+
if self.models_storage_dir.exists():
|
652 |
+
total_size = sum(f.stat().st_size for f in self.models_storage_dir.rglob('*') if f.is_file())
|
653 |
+
stats['storage_info'] = {
|
654 |
+
'total_size_mb': total_size / (1024 * 1024),
|
655 |
+
'model_count': len(list(self.models_storage_dir.iterdir()))
|
656 |
+
}
|
657 |
+
|
658 |
+
# Recent activity
|
659 |
+
if self.registry_log_path.exists():
|
660 |
+
try:
|
661 |
+
with open(self.registry_log_path, 'r') as f:
|
662 |
+
logs = json.load(f)
|
663 |
+
stats['recent_activity'] = logs[-10:] # Last 10 events
|
664 |
+
except:
|
665 |
+
pass
|
666 |
+
|
667 |
+
return stats
|
668 |
+
|
669 |
+
except Exception as e:
|
670 |
+
logger.error(f"Failed to get registry stats: {e}")
|
671 |
+
return {'error': str(e)}
|