Commit
·
0d47abb
1
Parent(s):
3f56aad
Create conftest.py
Browse filesAdding Tests for MLOps Infrastructure Enhancement
- tests/conftest.py +493 -0
tests/conftest.py
ADDED
|
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# tests/conftest.py
|
| 2 |
+
# Shared test configuration and fixtures
|
| 3 |
+
|
| 4 |
+
import pytest
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import tempfile
|
| 8 |
+
import sys
|
| 9 |
+
import os
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from unittest.mock import patch
|
| 12 |
+
|
| 13 |
+
# Add project root to Python path
|
| 14 |
+
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
|
| 15 |
+
|
| 16 |
+
@pytest.fixture(scope="session")
|
| 17 |
+
def test_data_dir():
|
| 18 |
+
"""Create temporary directory for test data"""
|
| 19 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 20 |
+
yield Path(temp_dir)
|
| 21 |
+
|
| 22 |
+
@pytest.fixture(scope="session")
|
| 23 |
+
def sample_fake_news_data():
|
| 24 |
+
"""Generate realistic fake news dataset for testing"""
|
| 25 |
+
np.random.seed(42)
|
| 26 |
+
|
| 27 |
+
# Realistic fake news patterns
|
| 28 |
+
fake_texts = [
|
| 29 |
+
"BREAKING: Scientists discover shocking truth about vaccines that doctors don't want you to know!",
|
| 30 |
+
"EXCLUSIVE: Celebrity caught in major scandal - you won't believe what happened next!",
|
| 31 |
+
"ALERT: Government secretly planning massive operation - leaked documents reveal everything!",
|
| 32 |
+
"AMAZING: Local mom discovers one weird trick that makes millions - experts hate her!",
|
| 33 |
+
"URGENT: New study proves everything you know about nutrition is completely wrong!",
|
| 34 |
+
] * 20
|
| 35 |
+
|
| 36 |
+
# Realistic real news patterns
|
| 37 |
+
real_texts = [
|
| 38 |
+
"Local city council approves new infrastructure budget for road maintenance and repairs.",
|
| 39 |
+
"University researchers publish peer-reviewed study on climate change impacts in regional ecosystems.",
|
| 40 |
+
"Stock market shows mixed results following quarterly earnings reports from major corporations.",
|
| 41 |
+
"Public health officials recommend updated vaccination schedules based on recent clinical trials.",
|
| 42 |
+
"Municipal government announces new public transportation routes to improve city connectivity.",
|
| 43 |
+
] * 20
|
| 44 |
+
|
| 45 |
+
# Combine and create DataFrame
|
| 46 |
+
all_texts = fake_texts + real_texts
|
| 47 |
+
all_labels = [1] * len(fake_texts) + [0] * len(real_texts)
|
| 48 |
+
|
| 49 |
+
df = pd.DataFrame({
|
| 50 |
+
'text': all_texts,
|
| 51 |
+
'label': all_labels
|
| 52 |
+
})
|
| 53 |
+
|
| 54 |
+
return df.sample(frac=1, random_state=42).reset_index(drop=True)
|
| 55 |
+
|
| 56 |
+
@pytest.fixture
|
| 57 |
+
def mock_enhanced_features():
|
| 58 |
+
"""Mock enhanced feature engineering when not available"""
|
| 59 |
+
with patch('model.retrain.ENHANCED_FEATURES_AVAILABLE', True):
|
| 60 |
+
with patch('model.retrain.AdvancedFeatureEngineer') as mock_fe:
|
| 61 |
+
# Configure mock to behave like real feature engineer
|
| 62 |
+
mock_instance = mock_fe.return_value
|
| 63 |
+
mock_instance.get_feature_metadata.return_value = {
|
| 64 |
+
'total_features': 5000,
|
| 65 |
+
'feature_types': {
|
| 66 |
+
'tfidf_features': 3000,
|
| 67 |
+
'sentiment_features': 10,
|
| 68 |
+
'readability_features': 15,
|
| 69 |
+
'entity_features': 25,
|
| 70 |
+
'linguistic_features': 50
|
| 71 |
+
},
|
| 72 |
+
'configuration': {'test': True}
|
| 73 |
+
}
|
| 74 |
+
mock_instance.get_feature_importance.return_value = {
|
| 75 |
+
'feature_1': 0.15,
|
| 76 |
+
'feature_2': 0.12,
|
| 77 |
+
'feature_3': 0.10
|
| 78 |
+
}
|
| 79 |
+
mock_instance.get_feature_names.return_value = [f'feature_{i}' for i in range(5000)]
|
| 80 |
+
|
| 81 |
+
yield mock_fe
|
| 82 |
+
|
| 83 |
+
# tests/test_data_processing.py
|
| 84 |
+
# Test data processing and validation components
|
| 85 |
+
|
| 86 |
+
import pytest
|
| 87 |
+
import pandas as pd
|
| 88 |
+
import numpy as np
|
| 89 |
+
from pathlib import Path
|
| 90 |
+
import tempfile
|
| 91 |
+
|
| 92 |
+
from data.data_validator import DataValidator
|
| 93 |
+
from data.prepare_datasets import DatasetPreparer
|
| 94 |
+
|
| 95 |
+
class TestDataValidation:
|
| 96 |
+
"""Test data validation functionality"""
|
| 97 |
+
|
| 98 |
+
def test_validate_text_column(self, sample_fake_news_data):
|
| 99 |
+
"""Test text column validation"""
|
| 100 |
+
validator = DataValidator()
|
| 101 |
+
|
| 102 |
+
# Valid data should pass
|
| 103 |
+
is_valid, issues = validator.validate_dataframe(sample_fake_news_data)
|
| 104 |
+
assert is_valid == True
|
| 105 |
+
assert len(issues) == 0
|
| 106 |
+
|
| 107 |
+
# Test with invalid data
|
| 108 |
+
invalid_data = pd.DataFrame({
|
| 109 |
+
'text': ['', 'x', None, 'Valid text here'],
|
| 110 |
+
'label': [0, 1, 0, 2] # Invalid label
|
| 111 |
+
})
|
| 112 |
+
|
| 113 |
+
is_valid, issues = validator.validate_dataframe(invalid_data)
|
| 114 |
+
assert is_valid == False
|
| 115 |
+
assert len(issues) > 0
|
| 116 |
+
|
| 117 |
+
def test_text_quality_validation(self):
|
| 118 |
+
"""Test text quality validation rules"""
|
| 119 |
+
validator = DataValidator()
|
| 120 |
+
|
| 121 |
+
# Test minimum length requirement
|
| 122 |
+
short_texts = pd.DataFrame({
|
| 123 |
+
'text': ['hi', 'ok', 'This is a proper length text for validation'],
|
| 124 |
+
'label': [0, 1, 0]
|
| 125 |
+
})
|
| 126 |
+
|
| 127 |
+
is_valid, issues = validator.validate_dataframe(short_texts)
|
| 128 |
+
assert is_valid == False
|
| 129 |
+
assert any('length' in str(issue).lower() for issue in issues)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# tests/test_train_integration.py
|
| 133 |
+
# Test integration with train.py to ensure compatibility
|
| 134 |
+
|
| 135 |
+
import pytest
|
| 136 |
+
import tempfile
|
| 137 |
+
from pathlib import Path
|
| 138 |
+
from unittest.mock import patch
|
| 139 |
+
|
| 140 |
+
class TestTrainRetrainCompatibility:
|
| 141 |
+
"""Test compatibility between train.py and retrain.py"""
|
| 142 |
+
|
| 143 |
+
def test_metadata_compatibility(self):
|
| 144 |
+
"""Test metadata format compatibility between train and retrain"""
|
| 145 |
+
from model.train import EnhancedModelTrainer
|
| 146 |
+
from model.retrain import EnhancedModelRetrainer
|
| 147 |
+
|
| 148 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 149 |
+
temp_path = Path(temp_dir)
|
| 150 |
+
|
| 151 |
+
# Mock trainer to avoid full training
|
| 152 |
+
trainer = EnhancedModelTrainer(use_enhanced_features=False)
|
| 153 |
+
trainer.base_dir = temp_path
|
| 154 |
+
trainer.setup_paths()
|
| 155 |
+
|
| 156 |
+
# Create sample metadata as train.py would
|
| 157 |
+
sample_metadata = {
|
| 158 |
+
'model_version': 'v1.0',
|
| 159 |
+
'model_type': 'enhanced_pipeline_cv',
|
| 160 |
+
'feature_engineering': {'type': 'standard'},
|
| 161 |
+
'test_f1': 0.85,
|
| 162 |
+
'cross_validation': {
|
| 163 |
+
'test_scores': {'f1': {'mean': 0.82, 'std': 0.03}}
|
| 164 |
+
}
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
# Save metadata
|
| 168 |
+
import json
|
| 169 |
+
with open(trainer.metadata_path, 'w') as f:
|
| 170 |
+
json.dump(sample_metadata, f)
|
| 171 |
+
|
| 172 |
+
# Test retrainer can read it
|
| 173 |
+
retrainer = EnhancedModelRetrainer()
|
| 174 |
+
retrainer.base_dir = temp_path
|
| 175 |
+
retrainer.setup_paths()
|
| 176 |
+
|
| 177 |
+
metadata = retrainer.load_existing_metadata()
|
| 178 |
+
assert metadata is not None
|
| 179 |
+
assert metadata['model_version'] == 'v1.0'
|
| 180 |
+
assert metadata['feature_engineering']['type'] == 'standard'
|
| 181 |
+
|
| 182 |
+
def test_model_file_compatibility(self):
|
| 183 |
+
"""Test model file format compatibility"""
|
| 184 |
+
# Both train.py and retrain.py should save/load models consistently
|
| 185 |
+
from model.retrain import EnhancedModelRetrainer
|
| 186 |
+
|
| 187 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 188 |
+
temp_path = Path(temp_dir)
|
| 189 |
+
|
| 190 |
+
retrainer = EnhancedModelRetrainer()
|
| 191 |
+
retrainer.base_dir = temp_path
|
| 192 |
+
retrainer.setup_paths()
|
| 193 |
+
|
| 194 |
+
# Create mock pipeline as train.py would save
|
| 195 |
+
from sklearn.pipeline import Pipeline
|
| 196 |
+
from sklearn.linear_model import LogisticRegression
|
| 197 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 198 |
+
|
| 199 |
+
mock_pipeline = Pipeline([
|
| 200 |
+
('vectorize', TfidfVectorizer(max_features=1000)),
|
| 201 |
+
('model', LogisticRegression())
|
| 202 |
+
])
|
| 203 |
+
|
| 204 |
+
import joblib
|
| 205 |
+
joblib.dump(mock_pipeline, retrainer.prod_pipeline_path)
|
| 206 |
+
|
| 207 |
+
# Test retrainer can load it
|
| 208 |
+
success, model, message = retrainer.load_production_model()
|
| 209 |
+
assert success == True
|
| 210 |
+
assert model is not None
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# tests/pytest.ini
|
| 214 |
+
# Pytest configuration file
|
| 215 |
+
[tool:pytest]
|
| 216 |
+
testpaths = tests
|
| 217 |
+
python_files = test_*.py
|
| 218 |
+
python_classes = Test*
|
| 219 |
+
python_functions = test_*
|
| 220 |
+
addopts =
|
| 221 |
+
-v
|
| 222 |
+
--tb=short
|
| 223 |
+
--strict-markers
|
| 224 |
+
--disable-warnings
|
| 225 |
+
--color=yes
|
| 226 |
+
markers =
|
| 227 |
+
slow: marks tests as slow (deselect with '-m "not slow"')
|
| 228 |
+
integration: marks tests as integration tests
|
| 229 |
+
unit: marks tests as unit tests
|
| 230 |
+
cpu_constraint: marks tests that verify CPU constraint compliance
|
| 231 |
+
filterwarnings =
|
| 232 |
+
ignore::UserWarning
|
| 233 |
+
ignore::FutureWarning
|
| 234 |
+
ignore::DeprecationWarning
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
# tests/test_lightgbm_integration.py
|
| 238 |
+
# Specific tests for LightGBM integration
|
| 239 |
+
|
| 240 |
+
import pytest
|
| 241 |
+
import numpy as np
|
| 242 |
+
from unittest.mock import patch
|
| 243 |
+
import lightgbm as lgb
|
| 244 |
+
|
| 245 |
+
class TestLightGBMIntegration:
|
| 246 |
+
"""Test LightGBM-specific functionality"""
|
| 247 |
+
|
| 248 |
+
def test_lightgbm_model_configuration(self):
|
| 249 |
+
"""Test LightGBM model is properly configured for CPU constraints"""
|
| 250 |
+
from model.retrain import EnhancedModelRetrainer
|
| 251 |
+
|
| 252 |
+
retrainer = EnhancedModelRetrainer()
|
| 253 |
+
lgb_config = retrainer.models['lightgbm']
|
| 254 |
+
lgb_model = lgb_config['model']
|
| 255 |
+
|
| 256 |
+
# Verify CPU-friendly configuration
|
| 257 |
+
assert isinstance(lgb_model, lgb.LGBMClassifier)
|
| 258 |
+
assert lgb_model.n_jobs == 1
|
| 259 |
+
assert lgb_model.verbose == -1
|
| 260 |
+
assert lgb_model.n_estimators <= 100
|
| 261 |
+
assert lgb_model.num_leaves <= 31
|
| 262 |
+
|
| 263 |
+
# Verify parameter grid is reasonable for CPU
|
| 264 |
+
param_grid = lgb_config['param_grid']
|
| 265 |
+
assert all(est <= 100 for est in param_grid['model__n_estimators'])
|
| 266 |
+
assert all(leaves <= 31 for leaves in param_grid['model__num_leaves'])
|
| 267 |
+
|
| 268 |
+
def test_lightgbm_training_integration(self):
|
| 269 |
+
"""Test LightGBM integrates properly in training pipeline"""
|
| 270 |
+
from model.retrain import EnhancedModelRetrainer
|
| 271 |
+
|
| 272 |
+
# Create minimal dataset
|
| 273 |
+
X = np.random.randn(50, 10)
|
| 274 |
+
y = np.random.randint(0, 2, 50)
|
| 275 |
+
|
| 276 |
+
retrainer = EnhancedModelRetrainer()
|
| 277 |
+
retrainer.use_enhanced_features = False
|
| 278 |
+
|
| 279 |
+
# Test hyperparameter tuning works with LightGBM
|
| 280 |
+
pipeline = retrainer.create_preprocessing_pipeline()
|
| 281 |
+
|
| 282 |
+
try:
|
| 283 |
+
best_model, results = retrainer.hyperparameter_tuning_with_cv(
|
| 284 |
+
pipeline, X, y, 'lightgbm'
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Should complete without errors
|
| 288 |
+
assert best_model is not None
|
| 289 |
+
assert 'cross_validation' in results or 'error' in results
|
| 290 |
+
|
| 291 |
+
except Exception as e:
|
| 292 |
+
# If tuning fails, should fall back gracefully
|
| 293 |
+
assert 'fallback' in str(e).lower() or 'error' in str(e).lower()
|
| 294 |
+
|
| 295 |
+
def test_lightgbm_cpu_performance(self):
|
| 296 |
+
"""Test LightGBM performance is acceptable under CPU constraints"""
|
| 297 |
+
import time
|
| 298 |
+
from model.retrain import EnhancedModelRetrainer
|
| 299 |
+
|
| 300 |
+
# Create reasonably sized dataset
|
| 301 |
+
X = np.random.randn(200, 20)
|
| 302 |
+
y = np.random.randint(0, 2, 200)
|
| 303 |
+
|
| 304 |
+
retrainer = EnhancedModelRetrainer()
|
| 305 |
+
pipeline = retrainer.create_preprocessing_pipeline()
|
| 306 |
+
lgb_model = retrainer.models['lightgbm']['model']
|
| 307 |
+
pipeline.set_params(model=lgb_model)
|
| 308 |
+
|
| 309 |
+
# Time the training
|
| 310 |
+
start_time = time.time()
|
| 311 |
+
pipeline.fit(X, y)
|
| 312 |
+
training_time = time.time() - start_time
|
| 313 |
+
|
| 314 |
+
# Should complete reasonably quickly on CPU
|
| 315 |
+
assert training_time < 30 # Should take less than 30 seconds
|
| 316 |
+
|
| 317 |
+
# Should produce valid predictions
|
| 318 |
+
predictions = pipeline.predict(X[:10])
|
| 319 |
+
assert len(predictions) == 10
|
| 320 |
+
assert all(pred in [0, 1] for pred in predictions)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# tests/test_ensemble_statistical_validation.py
|
| 324 |
+
# Test ensemble statistical validation logic
|
| 325 |
+
|
| 326 |
+
import pytest
|
| 327 |
+
import numpy as np
|
| 328 |
+
from scipy import stats
|
| 329 |
+
from unittest.mock import Mock, patch
|
| 330 |
+
|
| 331 |
+
class TestEnsembleStatisticalValidation:
|
| 332 |
+
"""Test statistical validation for ensemble selection"""
|
| 333 |
+
|
| 334 |
+
def test_paired_ttest_ensemble_selection(self):
|
| 335 |
+
"""Test paired t-test logic for ensemble vs individual models"""
|
| 336 |
+
from model.retrain import CVModelComparator
|
| 337 |
+
|
| 338 |
+
comparator = CVModelComparator(cv_folds=5, random_state=42)
|
| 339 |
+
|
| 340 |
+
# Create mock CV scores where ensemble is significantly better
|
| 341 |
+
individual_scores = [0.75, 0.74, 0.76, 0.73, 0.75]
|
| 342 |
+
ensemble_scores = [0.80, 0.81, 0.79, 0.78, 0.82]
|
| 343 |
+
|
| 344 |
+
# Test metric comparison
|
| 345 |
+
comparison = comparator._compare_metric_scores(
|
| 346 |
+
individual_scores, ensemble_scores, 'f1', 'individual', 'ensemble'
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
assert 'tests' in comparison
|
| 350 |
+
assert 'paired_ttest' in comparison['tests']
|
| 351 |
+
|
| 352 |
+
# Should detect significant improvement
|
| 353 |
+
t_test_result = comparison['tests']['paired_ttest']
|
| 354 |
+
assert 'p_value' in t_test_result
|
| 355 |
+
assert 'significant' in t_test_result
|
| 356 |
+
|
| 357 |
+
# With this clear difference, should be significant
|
| 358 |
+
if t_test_result['p_value'] is not None:
|
| 359 |
+
assert t_test_result['significant'] == True
|
| 360 |
+
|
| 361 |
+
def test_ensemble_not_selected_when_not_significant(self):
|
| 362 |
+
"""Test ensemble is not selected when improvement is not significant"""
|
| 363 |
+
from model.retrain import CVModelComparator
|
| 364 |
+
|
| 365 |
+
comparator = CVModelComparator(cv_folds=5, random_state=42)
|
| 366 |
+
|
| 367 |
+
# Create mock CV scores where ensemble is only marginally better
|
| 368 |
+
individual_scores = [0.75, 0.74, 0.76, 0.73, 0.75]
|
| 369 |
+
ensemble_scores = [0.751, 0.741, 0.761, 0.731, 0.751] # Tiny improvement
|
| 370 |
+
|
| 371 |
+
comparison = comparator._compare_metric_scores(
|
| 372 |
+
individual_scores, ensemble_scores, 'f1', 'individual', 'ensemble'
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Should not show significant improvement
|
| 376 |
+
assert comparison['significant_improvement'] == False
|
| 377 |
+
|
| 378 |
+
def test_effect_size_calculation(self):
|
| 379 |
+
"""Test Cohen's d effect size calculation"""
|
| 380 |
+
from model.retrain import CVModelComparator
|
| 381 |
+
|
| 382 |
+
comparator = CVModelComparator(cv_folds=5, random_state=42)
|
| 383 |
+
|
| 384 |
+
# Create scores with known effect size
|
| 385 |
+
individual_scores = [0.70, 0.71, 0.69, 0.72, 0.70]
|
| 386 |
+
ensemble_scores = [0.80, 0.81, 0.79, 0.82, 0.80] # Large effect
|
| 387 |
+
|
| 388 |
+
comparison = comparator._compare_metric_scores(
|
| 389 |
+
individual_scores, ensemble_scores, 'f1', 'individual', 'ensemble'
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
assert 'effect_size' in comparison
|
| 393 |
+
effect_size = comparison['effect_size']
|
| 394 |
+
|
| 395 |
+
# Should detect large effect size
|
| 396 |
+
assert abs(effect_size) > 0.5 # Large effect by Cohen's standards
|
| 397 |
+
|
| 398 |
+
def test_promotion_decision_with_feature_upgrade(self):
|
| 399 |
+
"""Test promotion decision considers feature engineering upgrades"""
|
| 400 |
+
from model.retrain import CVModelComparator
|
| 401 |
+
|
| 402 |
+
comparator = CVModelComparator()
|
| 403 |
+
|
| 404 |
+
# Mock comparison results with feature upgrade
|
| 405 |
+
mock_results = {
|
| 406 |
+
'metric_comparisons': {
|
| 407 |
+
'f1': {
|
| 408 |
+
'improvement': 0.008, # Small improvement
|
| 409 |
+
'significant_improvement': False
|
| 410 |
+
},
|
| 411 |
+
'accuracy': {
|
| 412 |
+
'improvement': 0.005,
|
| 413 |
+
'significant_improvement': False
|
| 414 |
+
}
|
| 415 |
+
},
|
| 416 |
+
'feature_engineering_comparison': {
|
| 417 |
+
'feature_upgrade': {
|
| 418 |
+
'is_upgrade': True,
|
| 419 |
+
'upgrade_type': 'standard_to_enhanced'
|
| 420 |
+
}
|
| 421 |
+
}
|
| 422 |
+
}
|
| 423 |
+
|
| 424 |
+
decision = comparator._make_enhanced_promotion_decision(mock_results)
|
| 425 |
+
|
| 426 |
+
# Should promote despite small improvement due to feature upgrade
|
| 427 |
+
assert decision['promote_candidate'] == True
|
| 428 |
+
assert decision['feature_engineering_factor'] == True
|
| 429 |
+
assert 'feature' in decision['reason'].lower()
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
# tests/run_tests.py
|
| 433 |
+
# Test runner script with different test categories
|
| 434 |
+
|
| 435 |
+
import pytest
|
| 436 |
+
import sys
|
| 437 |
+
from pathlib import Path
|
| 438 |
+
|
| 439 |
+
def run_unit_tests():
|
| 440 |
+
"""Run fast unit tests"""
|
| 441 |
+
return pytest.main([
|
| 442 |
+
"tests/",
|
| 443 |
+
"-m", "not slow and not integration",
|
| 444 |
+
"-v",
|
| 445 |
+
"--tb=short"
|
| 446 |
+
])
|
| 447 |
+
|
| 448 |
+
def run_integration_tests():
|
| 449 |
+
"""Run slower integration tests"""
|
| 450 |
+
return pytest.main([
|
| 451 |
+
"tests/",
|
| 452 |
+
"-m", "integration",
|
| 453 |
+
"-v",
|
| 454 |
+
"--tb=short"
|
| 455 |
+
])
|
| 456 |
+
|
| 457 |
+
def run_cpu_constraint_tests():
|
| 458 |
+
"""Run tests that verify CPU constraint compliance"""
|
| 459 |
+
return pytest.main([
|
| 460 |
+
"tests/",
|
| 461 |
+
"-m", "cpu_constraint",
|
| 462 |
+
"-v",
|
| 463 |
+
"--tb=short"
|
| 464 |
+
])
|
| 465 |
+
|
| 466 |
+
def run_all_tests():
|
| 467 |
+
"""Run complete test suite"""
|
| 468 |
+
return pytest.main([
|
| 469 |
+
"tests/",
|
| 470 |
+
"-v",
|
| 471 |
+
"--tb=short",
|
| 472 |
+
"--cov=model",
|
| 473 |
+
"--cov-report=html"
|
| 474 |
+
])
|
| 475 |
+
|
| 476 |
+
if __name__ == "__main__":
|
| 477 |
+
if len(sys.argv) > 1:
|
| 478 |
+
test_type = sys.argv[1]
|
| 479 |
+
if test_type == "unit":
|
| 480 |
+
exit_code = run_unit_tests()
|
| 481 |
+
elif test_type == "integration":
|
| 482 |
+
exit_code = run_integration_tests()
|
| 483 |
+
elif test_type == "cpu":
|
| 484 |
+
exit_code = run_cpu_constraint_tests()
|
| 485 |
+
elif test_type == "all":
|
| 486 |
+
exit_code = run_all_tests()
|
| 487 |
+
else:
|
| 488 |
+
print("Usage: python run_tests.py [unit|integration|cpu|all]")
|
| 489 |
+
exit_code = 1
|
| 490 |
+
else:
|
| 491 |
+
exit_code = run_unit_tests() # Default to unit tests
|
| 492 |
+
|
| 493 |
+
sys.exit(exit_code)
|