Commit
·
0908ace
1
Parent(s):
113fca9
Update model/train.py
Browse filesAdding LightGBM for Ensemble Model
- model/train.py +347 -55
model/train.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# Enhanced version with
|
| 2 |
|
| 3 |
import seaborn as sns
|
| 4 |
import matplotlib.pyplot as plt
|
|
@@ -14,9 +14,10 @@ from sklearn.model_selection import (
|
|
| 14 |
train_test_split, cross_val_score, GridSearchCV,
|
| 15 |
StratifiedKFold, validation_curve, cross_validate
|
| 16 |
)
|
| 17 |
-
from sklearn.ensemble import RandomForestClassifier
|
| 18 |
from sklearn.linear_model import LogisticRegression
|
| 19 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
|
| 20 |
import pandas as pd
|
| 21 |
import numpy as np
|
| 22 |
from pathlib import Path
|
|
@@ -31,6 +32,7 @@ from datetime import datetime, timedelta
|
|
| 31 |
from typing import Dict, Tuple, Optional, Any, List
|
| 32 |
import warnings
|
| 33 |
import re
|
|
|
|
| 34 |
warnings.filterwarnings('ignore')
|
| 35 |
|
| 36 |
# Import enhanced feature engineering components
|
|
@@ -161,7 +163,7 @@ class ProgressTracker:
|
|
| 161 |
|
| 162 |
|
| 163 |
def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_folds: int = 5,
|
| 164 |
-
use_enhanced_features: bool = False) -> Dict:
|
| 165 |
"""Estimate training time based on dataset characteristics and feature complexity"""
|
| 166 |
|
| 167 |
# Base time estimates (in seconds) based on empirical testing
|
|
@@ -180,12 +182,16 @@ def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_fol
|
|
| 180 |
base_times['feature_selection'] *= 2.0 # More features to select from
|
| 181 |
base_times['enhanced_feature_extraction'] = max(2.0, dataset_size * 0.05) # New step
|
| 182 |
|
| 183 |
-
# Hyperparameter tuning multipliers
|
| 184 |
tuning_multipliers = {
|
| 185 |
'logistic_regression': 8 if enable_tuning else 1, # 8 param combinations
|
| 186 |
'random_forest': 12 if enable_tuning else 1, # 12 param combinations
|
|
|
|
| 187 |
}
|
| 188 |
|
|
|
|
|
|
|
|
|
|
| 189 |
# Cross-validation multiplier
|
| 190 |
cv_multiplier = cv_folds if dataset_size > 100 else 1
|
| 191 |
|
|
@@ -202,7 +208,7 @@ def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_fol
|
|
| 202 |
|
| 203 |
estimates['feature_selection'] = base_times['feature_selection']
|
| 204 |
|
| 205 |
-
# Model training (now includes CV)
|
| 206 |
for model_name, multiplier in tuning_multipliers.items():
|
| 207 |
model_time = base_times['simple_training'] * multiplier * cv_multiplier
|
| 208 |
estimates[f'{model_name}_training'] = model_time
|
|
@@ -211,14 +217,19 @@ def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_fol
|
|
| 211 |
# Cross-validation overhead
|
| 212 |
estimates['cross_validation'] = base_times['simple_training'] * cv_folds * 0.5
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
# Model saving
|
| 215 |
estimates['model_saving'] = 1.0
|
| 216 |
|
| 217 |
# Total estimate
|
| 218 |
-
total_estimate = sum(estimates.values())
|
| 219 |
|
| 220 |
-
# Add buffer for overhead (more for enhanced features)
|
| 221 |
-
buffer_multiplier = 1.4 if use_enhanced_features else 1.2
|
| 222 |
total_estimate *= buffer_multiplier
|
| 223 |
|
| 224 |
return {
|
|
@@ -228,7 +239,8 @@ def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_fol
|
|
| 228 |
'dataset_size': dataset_size,
|
| 229 |
'enable_tuning': enable_tuning,
|
| 230 |
'cv_folds': cv_folds,
|
| 231 |
-
'use_enhanced_features': use_enhanced_features
|
|
|
|
| 232 |
}
|
| 233 |
|
| 234 |
|
|
@@ -288,7 +300,7 @@ class CrossValidationManager:
|
|
| 288 |
cv=cv_strategy,
|
| 289 |
scoring=scoring_metrics,
|
| 290 |
return_train_score=True,
|
| 291 |
-
n_jobs=1, # Use single job for stability
|
| 292 |
verbose=0
|
| 293 |
)
|
| 294 |
|
|
@@ -381,7 +393,6 @@ class CrossValidationManager:
|
|
| 381 |
scores2 = results2['test_scores'][metric]['scores']
|
| 382 |
|
| 383 |
# Paired t-test
|
| 384 |
-
from scipy import stats
|
| 385 |
t_stat, p_value = stats.ttest_rel(scores1, scores2)
|
| 386 |
|
| 387 |
comparison = {
|
|
@@ -406,21 +417,135 @@ class CrossValidationManager:
|
|
| 406 |
return {'error': str(e)}
|
| 407 |
|
| 408 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
class EnhancedModelTrainer:
|
| 410 |
-
"""Production-ready model trainer with enhanced
|
| 411 |
|
| 412 |
-
def __init__(self, use_enhanced_features: bool = None):
|
| 413 |
# Auto-detect enhanced features if not specified
|
| 414 |
if use_enhanced_features is None:
|
| 415 |
self.use_enhanced_features = ENHANCED_FEATURES_AVAILABLE
|
| 416 |
else:
|
| 417 |
self.use_enhanced_features = use_enhanced_features and ENHANCED_FEATURES_AVAILABLE
|
| 418 |
|
|
|
|
| 419 |
self.setup_paths()
|
| 420 |
self.setup_training_config()
|
| 421 |
self.setup_models()
|
| 422 |
self.progress_tracker = None
|
| 423 |
self.cv_manager = CrossValidationManager()
|
|
|
|
| 424 |
|
| 425 |
# Enhanced feature tracking
|
| 426 |
self.feature_engineer = None
|
|
@@ -480,14 +605,14 @@ class EnhancedModelTrainer:
|
|
| 480 |
self.class_weight = 'balanced'
|
| 481 |
|
| 482 |
def setup_models(self):
|
| 483 |
-
"""Setup model configurations for comparison"""
|
| 484 |
self.models = {
|
| 485 |
'logistic_regression': {
|
| 486 |
'model': LogisticRegression(
|
| 487 |
max_iter=self.max_iter,
|
| 488 |
class_weight=self.class_weight,
|
| 489 |
random_state=self.random_state,
|
| 490 |
-
n_jobs
|
| 491 |
),
|
| 492 |
'param_grid': {
|
| 493 |
'model__C': [0.1, 1, 10],
|
|
@@ -496,15 +621,34 @@ class EnhancedModelTrainer:
|
|
| 496 |
},
|
| 497 |
'random_forest': {
|
| 498 |
'model': RandomForestClassifier(
|
| 499 |
-
n_estimators=50,
|
| 500 |
class_weight=self.class_weight,
|
| 501 |
random_state=self.random_state,
|
| 502 |
-
n_jobs
|
| 503 |
),
|
| 504 |
'param_grid': {
|
| 505 |
'model__n_estimators': [50, 100],
|
| 506 |
'model__max_depth': [10, None]
|
| 507 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
}
|
| 509 |
}
|
| 510 |
|
|
@@ -752,7 +896,7 @@ class EnhancedModelTrainer:
|
|
| 752 |
param_grid,
|
| 753 |
cv=cv_strategy,
|
| 754 |
scoring='f1_weighted',
|
| 755 |
-
n_jobs=1, # Single job for
|
| 756 |
verbose=0, # Reduce verbosity for speed
|
| 757 |
return_train_score=True # For overfitting analysis
|
| 758 |
)
|
|
@@ -813,9 +957,10 @@ class EnhancedModelTrainer:
|
|
| 813 |
raise Exception(f"Both hyperparameter tuning and fallback training failed: {str(e)} | {str(e2)}")
|
| 814 |
|
| 815 |
def train_and_evaluate_models(self, X_train, X_test, y_train, y_test) -> Dict:
|
| 816 |
-
"""Train and evaluate multiple models with enhanced features and comprehensive CV"""
|
| 817 |
|
| 818 |
results = {}
|
|
|
|
| 819 |
|
| 820 |
for model_name in self.models.keys():
|
| 821 |
logger.info(f"Training {model_name} with {'enhanced' if self.use_enhanced_features else 'standard'} features...")
|
|
@@ -843,6 +988,9 @@ class EnhancedModelTrainer:
|
|
| 843 |
'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
|
| 844 |
}
|
| 845 |
|
|
|
|
|
|
|
|
|
|
| 846 |
# Log results
|
| 847 |
test_f1 = evaluation_metrics['f1']
|
| 848 |
cv_results = evaluation_metrics.get('cross_validation', {})
|
|
@@ -857,10 +1005,68 @@ class EnhancedModelTrainer:
|
|
| 857 |
logger.error(f"Training failed for {model_name}: {str(e)}")
|
| 858 |
results[model_name] = {'error': str(e)}
|
| 859 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 860 |
return results
|
| 861 |
|
| 862 |
def select_best_model(self, results: Dict) -> Tuple[str, Any, Dict]:
|
| 863 |
-
"""Select the best performing model based on CV results"""
|
| 864 |
|
| 865 |
if self.progress_tracker:
|
| 866 |
self.progress_tracker.update("Selecting best model")
|
|
@@ -870,28 +1076,50 @@ class EnhancedModelTrainer:
|
|
| 870 |
best_score = -1
|
| 871 |
best_metrics = None
|
| 872 |
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
if '
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 891 |
|
| 892 |
if best_model_name is None:
|
| 893 |
raise ValueError("No models trained successfully")
|
| 894 |
|
|
|
|
| 895 |
logger.info(f"Best model: {best_model_name} with {score_type} score: {best_score:.4f}")
|
| 896 |
return best_model_name, best_model, best_metrics
|
| 897 |
|
|
@@ -940,6 +1168,10 @@ class EnhancedModelTrainer:
|
|
| 940 |
}
|
| 941 |
joblib.dump(enhanced_ref, self.vectorizer_path)
|
| 942 |
logger.info(f"✅ Saved enhanced features reference to {self.vectorizer_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 943 |
|
| 944 |
except Exception as e:
|
| 945 |
logger.warning(f"Could not save individual components: {e}")
|
|
@@ -954,6 +1186,7 @@ class EnhancedModelTrainer:
|
|
| 954 |
metadata = {
|
| 955 |
'model_version': f"v1.0_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
| 956 |
'model_type': model_name,
|
|
|
|
| 957 |
'feature_engineering': {
|
| 958 |
'type': 'enhanced' if self.use_enhanced_features else 'standard',
|
| 959 |
'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE,
|
|
@@ -973,7 +1206,8 @@ class EnhancedModelTrainer:
|
|
| 973 |
'max_features': self.max_features,
|
| 974 |
'ngram_range': self.ngram_range,
|
| 975 |
'feature_selection_k': self.feature_selection_k,
|
| 976 |
-
'use_enhanced_features': self.use_enhanced_features
|
|
|
|
| 977 |
}
|
| 978 |
}
|
| 979 |
|
|
@@ -1030,6 +1264,18 @@ class EnhancedModelTrainer:
|
|
| 1030 |
metadata['cv_accuracy_mean'] = cv_results['test_scores']['accuracy']['mean']
|
| 1031 |
metadata['cv_accuracy_std'] = cv_results['test_scores']['accuracy']['std']
|
| 1032 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1033 |
# Add model comparison results if available
|
| 1034 |
if len(results) > 1:
|
| 1035 |
model_comparison = {}
|
|
@@ -1058,6 +1304,10 @@ class EnhancedModelTrainer:
|
|
| 1058 |
for feature_type, count in feature_metadata.get('feature_types', {}).items():
|
| 1059 |
logger.info(f" {feature_type}: {count}")
|
| 1060 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1061 |
logger.info(f"✅ Model artifacts saved successfully with {'enhanced' if self.use_enhanced_features else 'standard'} features")
|
| 1062 |
return True
|
| 1063 |
|
|
@@ -1072,18 +1322,22 @@ class EnhancedModelTrainer:
|
|
| 1072 |
logger.error(f"Failed to save backup pipeline: {str(e2)}")
|
| 1073 |
return False
|
| 1074 |
|
| 1075 |
-
def train_model(self, data_path: str = None, force_enhanced: bool = None) -> Tuple[bool, str]:
|
| 1076 |
-
"""Main training function with enhanced feature engineering
|
| 1077 |
try:
|
| 1078 |
-
# Override
|
| 1079 |
if force_enhanced is not None:
|
| 1080 |
original_setting = self.use_enhanced_features
|
| 1081 |
self.use_enhanced_features = force_enhanced and ENHANCED_FEATURES_AVAILABLE
|
| 1082 |
if force_enhanced and not ENHANCED_FEATURES_AVAILABLE:
|
| 1083 |
logger.warning("Enhanced features requested but not available, using standard features")
|
| 1084 |
|
|
|
|
|
|
|
|
|
|
| 1085 |
feature_type = "enhanced" if self.use_enhanced_features else "standard"
|
| 1086 |
-
|
|
|
|
| 1087 |
|
| 1088 |
# Override data path if provided
|
| 1089 |
if data_path:
|
|
@@ -1099,24 +1353,27 @@ class EnhancedModelTrainer:
|
|
| 1099 |
len(df),
|
| 1100 |
enable_tuning=True,
|
| 1101 |
cv_folds=self.cv_folds,
|
| 1102 |
-
use_enhanced_features=self.use_enhanced_features
|
|
|
|
| 1103 |
)
|
| 1104 |
|
| 1105 |
print(f"\n📊 Enhanced Training Configuration:")
|
| 1106 |
print(f"Dataset size: {len(df)} samples")
|
| 1107 |
print(f"Feature engineering: {feature_type.title()}")
|
| 1108 |
print(f"Cross-validation folds: {self.cv_folds}")
|
|
|
|
|
|
|
| 1109 |
print(f"Estimated time: {time_estimate['total_formatted']}")
|
| 1110 |
-
print(f"Models to train: {len(self.models)}")
|
| 1111 |
print(f"Hyperparameter tuning: Enabled")
|
| 1112 |
if self.use_enhanced_features:
|
| 1113 |
print(f"Enhanced features: Sentiment, Readability, Entities, Linguistic")
|
| 1114 |
print()
|
| 1115 |
|
| 1116 |
-
# Setup progress tracker (adjusted for
|
| 1117 |
base_steps = 4 + (len(self.models) * 3) + 1 # Basic steps
|
| 1118 |
enhanced_steps = 2 if self.use_enhanced_features else 0 # Feature engineering steps
|
| 1119 |
-
|
|
|
|
| 1120 |
self.progress_tracker = ProgressTracker(total_steps, f"{feature_type.title()} Training Progress")
|
| 1121 |
|
| 1122 |
# Prepare data
|
|
@@ -1152,10 +1409,10 @@ class EnhancedModelTrainer:
|
|
| 1152 |
if len(X_test) < 1:
|
| 1153 |
return False, "Cannot create test set. Dataset too small."
|
| 1154 |
|
| 1155 |
-
# Train and evaluate models with enhanced features
|
| 1156 |
results = self.train_and_evaluate_models(X_train, X_test, y_train, y_test)
|
| 1157 |
|
| 1158 |
-
# Select best model
|
| 1159 |
best_model_name, best_model, best_metrics = self.select_best_model(results)
|
| 1160 |
|
| 1161 |
# Save model artifacts with enhanced feature information
|
|
@@ -1165,7 +1422,7 @@ class EnhancedModelTrainer:
|
|
| 1165 |
# Finish progress tracking
|
| 1166 |
self.progress_tracker.finish()
|
| 1167 |
|
| 1168 |
-
# Create success message with
|
| 1169 |
cv_results = best_metrics.get('cross_validation', {})
|
| 1170 |
cv_info = ""
|
| 1171 |
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
|
@@ -1180,9 +1437,14 @@ class EnhancedModelTrainer:
|
|
| 1180 |
if feature_metadata:
|
| 1181 |
total_features = feature_metadata.get('total_features', 0)
|
| 1182 |
feature_info = f", Enhanced Features: {total_features}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1183 |
|
| 1184 |
success_message = (
|
| 1185 |
-
f"{feature_type.title()} model training completed successfully. "
|
| 1186 |
f"Best model: {best_model_name} "
|
| 1187 |
f"(Test F1: {best_metrics['f1']:.4f}, Test Accuracy: {best_metrics['accuracy']:.4f}{cv_info}{feature_info})"
|
| 1188 |
)
|
|
@@ -1193,22 +1455,24 @@ class EnhancedModelTrainer:
|
|
| 1193 |
except Exception as e:
|
| 1194 |
if self.progress_tracker:
|
| 1195 |
print() # New line after progress bar
|
| 1196 |
-
error_message = f"Enhanced model training failed: {str(e)}"
|
| 1197 |
logger.error(error_message)
|
| 1198 |
return False, error_message
|
| 1199 |
|
| 1200 |
|
| 1201 |
def main():
|
| 1202 |
-
"""Main execution function with enhanced
|
| 1203 |
import argparse
|
| 1204 |
|
| 1205 |
# Parse command line arguments
|
| 1206 |
-
parser = argparse.ArgumentParser(description='Train fake news detection model with enhanced features')
|
| 1207 |
parser.add_argument('--data_path', type=str, help='Path to training data CSV file')
|
| 1208 |
parser.add_argument('--config_path', type=str, help='Path to training configuration JSON file')
|
| 1209 |
parser.add_argument('--cv_folds', type=int, default=5, help='Number of cross-validation folds')
|
| 1210 |
parser.add_argument('--enhanced_features', action='store_true', help='Force use of enhanced features')
|
| 1211 |
parser.add_argument('--standard_features', action='store_true', help='Force use of standard TF-IDF features only')
|
|
|
|
|
|
|
| 1212 |
args = parser.parse_args()
|
| 1213 |
|
| 1214 |
# Determine feature engineering mode
|
|
@@ -1222,7 +1486,21 @@ def main():
|
|
| 1222 |
use_enhanced = False
|
| 1223 |
logger.info("Standard features explicitly requested")
|
| 1224 |
|
| 1225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1226 |
|
| 1227 |
# Apply CV folds from command line
|
| 1228 |
if args.cv_folds:
|
|
@@ -1246,6 +1524,10 @@ def main():
|
|
| 1246 |
if 'enhanced_features' in config and use_enhanced is None:
|
| 1247 |
trainer.use_enhanced_features = config['enhanced_features'] and ENHANCED_FEATURES_AVAILABLE
|
| 1248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1249 |
# Filter models if specified
|
| 1250 |
selected_models = config.get('selected_models')
|
| 1251 |
if selected_models and len(selected_models) < len(trainer.models):
|
|
@@ -1258,6 +1540,8 @@ def main():
|
|
| 1258 |
logger.info(f"Applied custom configuration with {trainer.cv_folds} CV folds")
|
| 1259 |
if trainer.use_enhanced_features:
|
| 1260 |
logger.info("Enhanced features enabled via configuration")
|
|
|
|
|
|
|
| 1261 |
|
| 1262 |
except Exception as e:
|
| 1263 |
logger.warning(f"Failed to load configuration: {e}, using defaults")
|
|
@@ -1277,6 +1561,14 @@ def main():
|
|
| 1277 |
print(f" {feature_type}: {count}")
|
| 1278 |
except Exception as e:
|
| 1279 |
logger.warning(f"Could not display feature summary: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1280 |
else:
|
| 1281 |
print(f"❌ {message}")
|
| 1282 |
exit(1)
|
|
|
|
| 1 |
+
# Enhanced version with LightGBM, ensemble voting, and statistical validation
|
| 2 |
|
| 3 |
import seaborn as sns
|
| 4 |
import matplotlib.pyplot as plt
|
|
|
|
| 14 |
train_test_split, cross_val_score, GridSearchCV,
|
| 15 |
StratifiedKFold, validation_curve, cross_validate
|
| 16 |
)
|
| 17 |
+
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
| 18 |
from sklearn.linear_model import LogisticRegression
|
| 19 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 20 |
+
import lightgbm as lgb
|
| 21 |
import pandas as pd
|
| 22 |
import numpy as np
|
| 23 |
from pathlib import Path
|
|
|
|
| 32 |
from typing import Dict, Tuple, Optional, Any, List
|
| 33 |
import warnings
|
| 34 |
import re
|
| 35 |
+
from scipy import stats
|
| 36 |
warnings.filterwarnings('ignore')
|
| 37 |
|
| 38 |
# Import enhanced feature engineering components
|
|
|
|
| 163 |
|
| 164 |
|
| 165 |
def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_folds: int = 5,
|
| 166 |
+
use_enhanced_features: bool = False, enable_ensemble: bool = True) -> Dict:
|
| 167 |
"""Estimate training time based on dataset characteristics and feature complexity"""
|
| 168 |
|
| 169 |
# Base time estimates (in seconds) based on empirical testing
|
|
|
|
| 182 |
base_times['feature_selection'] *= 2.0 # More features to select from
|
| 183 |
base_times['enhanced_feature_extraction'] = max(2.0, dataset_size * 0.05) # New step
|
| 184 |
|
| 185 |
+
# Hyperparameter tuning multipliers with LightGBM
|
| 186 |
tuning_multipliers = {
|
| 187 |
'logistic_regression': 8 if enable_tuning else 1, # 8 param combinations
|
| 188 |
'random_forest': 12 if enable_tuning else 1, # 12 param combinations
|
| 189 |
+
'lightgbm': 6 if enable_tuning else 1, # 6 param combinations (CPU optimized)
|
| 190 |
}
|
| 191 |
|
| 192 |
+
# Ensemble multiplier
|
| 193 |
+
ensemble_multiplier = 1.3 if enable_ensemble else 1.0 # 30% overhead for ensemble
|
| 194 |
+
|
| 195 |
# Cross-validation multiplier
|
| 196 |
cv_multiplier = cv_folds if dataset_size > 100 else 1
|
| 197 |
|
|
|
|
| 208 |
|
| 209 |
estimates['feature_selection'] = base_times['feature_selection']
|
| 210 |
|
| 211 |
+
# Model training (now includes CV and LightGBM)
|
| 212 |
for model_name, multiplier in tuning_multipliers.items():
|
| 213 |
model_time = base_times['simple_training'] * multiplier * cv_multiplier
|
| 214 |
estimates[f'{model_name}_training'] = model_time
|
|
|
|
| 217 |
# Cross-validation overhead
|
| 218 |
estimates['cross_validation'] = base_times['simple_training'] * cv_folds * 0.5
|
| 219 |
|
| 220 |
+
# Ensemble training and validation
|
| 221 |
+
if enable_ensemble:
|
| 222 |
+
estimates['ensemble_training'] = base_times['simple_training'] * 0.5
|
| 223 |
+
estimates['ensemble_validation'] = base_times['evaluation'] * 2
|
| 224 |
+
|
| 225 |
# Model saving
|
| 226 |
estimates['model_saving'] = 1.0
|
| 227 |
|
| 228 |
# Total estimate
|
| 229 |
+
total_estimate = sum(estimates.values()) * ensemble_multiplier
|
| 230 |
|
| 231 |
+
# Add buffer for overhead (more for enhanced features and ensemble)
|
| 232 |
+
buffer_multiplier = 1.5 if (use_enhanced_features and enable_ensemble) else 1.4 if use_enhanced_features else 1.2
|
| 233 |
total_estimate *= buffer_multiplier
|
| 234 |
|
| 235 |
return {
|
|
|
|
| 239 |
'dataset_size': dataset_size,
|
| 240 |
'enable_tuning': enable_tuning,
|
| 241 |
'cv_folds': cv_folds,
|
| 242 |
+
'use_enhanced_features': use_enhanced_features,
|
| 243 |
+
'enable_ensemble': enable_ensemble
|
| 244 |
}
|
| 245 |
|
| 246 |
|
|
|
|
| 300 |
cv=cv_strategy,
|
| 301 |
scoring=scoring_metrics,
|
| 302 |
return_train_score=True,
|
| 303 |
+
n_jobs=1, # Use single job for stability on HFS
|
| 304 |
verbose=0
|
| 305 |
)
|
| 306 |
|
|
|
|
| 393 |
scores2 = results2['test_scores'][metric]['scores']
|
| 394 |
|
| 395 |
# Paired t-test
|
|
|
|
| 396 |
t_stat, p_value = stats.ttest_rel(scores1, scores2)
|
| 397 |
|
| 398 |
comparison = {
|
|
|
|
| 417 |
return {'error': str(e)}
|
| 418 |
|
| 419 |
|
| 420 |
+
class EnsembleManager:
|
| 421 |
+
"""Manage ensemble model creation and validation"""
|
| 422 |
+
|
| 423 |
+
def __init__(self, random_state: int = 42):
|
| 424 |
+
self.random_state = random_state
|
| 425 |
+
|
| 426 |
+
def create_ensemble(self, individual_models: Dict[str, Any],
|
| 427 |
+
voting: str = 'soft') -> VotingClassifier:
|
| 428 |
+
"""Create ensemble from individual models"""
|
| 429 |
+
|
| 430 |
+
estimators = [(name, model) for name, model in individual_models.items()]
|
| 431 |
+
|
| 432 |
+
ensemble = VotingClassifier(
|
| 433 |
+
estimators=estimators,
|
| 434 |
+
voting=voting,
|
| 435 |
+
n_jobs=1 # CPU optimization for HFS
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
logger.info(f"Created {voting} voting ensemble with {len(estimators)} models")
|
| 439 |
+
return ensemble
|
| 440 |
+
|
| 441 |
+
def evaluate_ensemble_vs_individuals(self, ensemble, individual_models: Dict,
|
| 442 |
+
X_test, y_test) -> Dict:
|
| 443 |
+
"""Compare ensemble performance against individual models"""
|
| 444 |
+
|
| 445 |
+
results = {}
|
| 446 |
+
|
| 447 |
+
# Evaluate individual models
|
| 448 |
+
for name, model in individual_models.items():
|
| 449 |
+
y_pred = model.predict(X_test)
|
| 450 |
+
y_pred_proba = model.predict_proba(X_test)[:, 1]
|
| 451 |
+
|
| 452 |
+
results[name] = {
|
| 453 |
+
'accuracy': float(accuracy_score(y_test, y_pred)),
|
| 454 |
+
'precision': float(precision_score(y_test, y_pred, average='weighted')),
|
| 455 |
+
'recall': float(recall_score(y_test, y_pred, average='weighted')),
|
| 456 |
+
'f1': float(f1_score(y_test, y_pred, average='weighted')),
|
| 457 |
+
'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
|
| 458 |
+
}
|
| 459 |
+
|
| 460 |
+
# Evaluate ensemble
|
| 461 |
+
y_pred_ensemble = ensemble.predict(X_test)
|
| 462 |
+
y_pred_proba_ensemble = ensemble.predict_proba(X_test)[:, 1]
|
| 463 |
+
|
| 464 |
+
results['ensemble'] = {
|
| 465 |
+
'accuracy': float(accuracy_score(y_test, y_pred_ensemble)),
|
| 466 |
+
'precision': float(precision_score(y_test, y_pred_ensemble, average='weighted')),
|
| 467 |
+
'recall': float(recall_score(y_test, y_pred_ensemble, average='weighted')),
|
| 468 |
+
'f1': float(f1_score(y_test, y_pred_ensemble, average='weighted')),
|
| 469 |
+
'roc_auc': float(roc_auc_score(y_test, y_pred_proba_ensemble))
|
| 470 |
+
}
|
| 471 |
+
|
| 472 |
+
# Calculate improvement over best individual model
|
| 473 |
+
best_individual_f1 = max(results[name]['f1'] for name in individual_models.keys())
|
| 474 |
+
ensemble_f1 = results['ensemble']['f1']
|
| 475 |
+
improvement = ensemble_f1 - best_individual_f1
|
| 476 |
+
|
| 477 |
+
results['ensemble_analysis'] = {
|
| 478 |
+
'best_individual_f1': best_individual_f1,
|
| 479 |
+
'ensemble_f1': ensemble_f1,
|
| 480 |
+
'improvement': improvement,
|
| 481 |
+
'improvement_percentage': (improvement / best_individual_f1) * 100 if best_individual_f1 > 0 else 0,
|
| 482 |
+
'is_better': improvement > 0
|
| 483 |
+
}
|
| 484 |
+
|
| 485 |
+
return results
|
| 486 |
+
|
| 487 |
+
def statistical_ensemble_comparison(self, ensemble, individual_models: Dict,
|
| 488 |
+
X, y, cv_manager: CrossValidationManager) -> Dict:
|
| 489 |
+
"""Perform statistical comparison between ensemble and individual models"""
|
| 490 |
+
|
| 491 |
+
cv_strategy = cv_manager.create_cv_strategy(X, y)
|
| 492 |
+
|
| 493 |
+
results = {}
|
| 494 |
+
|
| 495 |
+
# Get CV results for ensemble
|
| 496 |
+
ensemble_cv = cv_manager.perform_cross_validation(ensemble, X, y, cv_strategy)
|
| 497 |
+
results['ensemble'] = ensemble_cv
|
| 498 |
+
|
| 499 |
+
# Get CV results for individual models
|
| 500 |
+
individual_cv_results = {}
|
| 501 |
+
for name, model in individual_models.items():
|
| 502 |
+
model_cv = cv_manager.perform_cross_validation(model, X, y, cv_strategy)
|
| 503 |
+
individual_cv_results[name] = model_cv
|
| 504 |
+
results[name] = model_cv
|
| 505 |
+
|
| 506 |
+
# Compare ensemble with each individual model
|
| 507 |
+
comparisons = {}
|
| 508 |
+
for name, model_cv in individual_cv_results.items():
|
| 509 |
+
comparison = cv_manager.compare_cv_results(model_cv, ensemble_cv)
|
| 510 |
+
comparisons[f'ensemble_vs_{name}'] = comparison
|
| 511 |
+
|
| 512 |
+
results['statistical_comparisons'] = comparisons
|
| 513 |
+
|
| 514 |
+
# Determine if ensemble should be used
|
| 515 |
+
ensemble_f1_scores = ensemble_cv.get('test_scores', {}).get('f1', {}).get('scores', [])
|
| 516 |
+
|
| 517 |
+
significantly_better_count = 0
|
| 518 |
+
for comparison in comparisons.values():
|
| 519 |
+
if comparison.get('paired_ttest', {}).get('significant', False) and comparison.get('difference', 0) > 0:
|
| 520 |
+
significantly_better_count += 1
|
| 521 |
+
|
| 522 |
+
results['ensemble_recommendation'] = {
|
| 523 |
+
'use_ensemble': significantly_better_count > 0,
|
| 524 |
+
'significantly_better_than': significantly_better_count,
|
| 525 |
+
'total_comparisons': len(comparisons),
|
| 526 |
+
'confidence': significantly_better_count / len(comparisons) if comparisons else 0
|
| 527 |
+
}
|
| 528 |
+
|
| 529 |
+
return results
|
| 530 |
+
|
| 531 |
+
|
| 532 |
class EnhancedModelTrainer:
|
| 533 |
+
"""Production-ready model trainer with LightGBM, enhanced features, and ensemble voting"""
|
| 534 |
|
| 535 |
+
def __init__(self, use_enhanced_features: bool = None, enable_ensemble: bool = True):
|
| 536 |
# Auto-detect enhanced features if not specified
|
| 537 |
if use_enhanced_features is None:
|
| 538 |
self.use_enhanced_features = ENHANCED_FEATURES_AVAILABLE
|
| 539 |
else:
|
| 540 |
self.use_enhanced_features = use_enhanced_features and ENHANCED_FEATURES_AVAILABLE
|
| 541 |
|
| 542 |
+
self.enable_ensemble = enable_ensemble
|
| 543 |
self.setup_paths()
|
| 544 |
self.setup_training_config()
|
| 545 |
self.setup_models()
|
| 546 |
self.progress_tracker = None
|
| 547 |
self.cv_manager = CrossValidationManager()
|
| 548 |
+
self.ensemble_manager = EnsembleManager()
|
| 549 |
|
| 550 |
# Enhanced feature tracking
|
| 551 |
self.feature_engineer = None
|
|
|
|
| 605 |
self.class_weight = 'balanced'
|
| 606 |
|
| 607 |
def setup_models(self):
|
| 608 |
+
"""Setup model configurations including LightGBM for comparison"""
|
| 609 |
self.models = {
|
| 610 |
'logistic_regression': {
|
| 611 |
'model': LogisticRegression(
|
| 612 |
max_iter=self.max_iter,
|
| 613 |
class_weight=self.class_weight,
|
| 614 |
random_state=self.random_state,
|
| 615 |
+
n_jobs=1 # CPU optimization
|
| 616 |
),
|
| 617 |
'param_grid': {
|
| 618 |
'model__C': [0.1, 1, 10],
|
|
|
|
| 621 |
},
|
| 622 |
'random_forest': {
|
| 623 |
'model': RandomForestClassifier(
|
| 624 |
+
n_estimators=50, # Reduced for CPU efficiency
|
| 625 |
class_weight=self.class_weight,
|
| 626 |
random_state=self.random_state,
|
| 627 |
+
n_jobs=1 # CPU optimization
|
| 628 |
),
|
| 629 |
'param_grid': {
|
| 630 |
'model__n_estimators': [50, 100],
|
| 631 |
'model__max_depth': [10, None]
|
| 632 |
}
|
| 633 |
+
},
|
| 634 |
+
'lightgbm': {
|
| 635 |
+
'model': lgb.LGBMClassifier(
|
| 636 |
+
objective='binary',
|
| 637 |
+
boosting_type='gbdt',
|
| 638 |
+
num_leaves=31,
|
| 639 |
+
max_depth=10,
|
| 640 |
+
learning_rate=0.1,
|
| 641 |
+
n_estimators=100,
|
| 642 |
+
class_weight=self.class_weight,
|
| 643 |
+
random_state=self.random_state,
|
| 644 |
+
n_jobs=1, # CPU optimization
|
| 645 |
+
verbose=-1 # Suppress LightGBM output
|
| 646 |
+
),
|
| 647 |
+
'param_grid': {
|
| 648 |
+
'model__n_estimators': [50, 100],
|
| 649 |
+
'model__learning_rate': [0.05, 0.1],
|
| 650 |
+
'model__num_leaves': [15, 31]
|
| 651 |
+
}
|
| 652 |
}
|
| 653 |
}
|
| 654 |
|
|
|
|
| 896 |
param_grid,
|
| 897 |
cv=cv_strategy,
|
| 898 |
scoring='f1_weighted',
|
| 899 |
+
n_jobs=1, # Single job for CPU optimization
|
| 900 |
verbose=0, # Reduce verbosity for speed
|
| 901 |
return_train_score=True # For overfitting analysis
|
| 902 |
)
|
|
|
|
| 957 |
raise Exception(f"Both hyperparameter tuning and fallback training failed: {str(e)} | {str(e2)}")
|
| 958 |
|
| 959 |
def train_and_evaluate_models(self, X_train, X_test, y_train, y_test) -> Dict:
|
| 960 |
+
"""Train and evaluate multiple models including LightGBM with enhanced features and comprehensive CV"""
|
| 961 |
|
| 962 |
results = {}
|
| 963 |
+
individual_models = {}
|
| 964 |
|
| 965 |
for model_name in self.models.keys():
|
| 966 |
logger.info(f"Training {model_name} with {'enhanced' if self.use_enhanced_features else 'standard'} features...")
|
|
|
|
| 988 |
'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
|
| 989 |
}
|
| 990 |
|
| 991 |
+
# Store for ensemble creation
|
| 992 |
+
individual_models[model_name] = best_model
|
| 993 |
+
|
| 994 |
# Log results
|
| 995 |
test_f1 = evaluation_metrics['f1']
|
| 996 |
cv_results = evaluation_metrics.get('cross_validation', {})
|
|
|
|
| 1005 |
logger.error(f"Training failed for {model_name}: {str(e)}")
|
| 1006 |
results[model_name] = {'error': str(e)}
|
| 1007 |
|
| 1008 |
+
# Create and evaluate ensemble if enabled and we have multiple successful models
|
| 1009 |
+
if self.enable_ensemble and len(individual_models) >= 2:
|
| 1010 |
+
logger.info("Creating ensemble model...")
|
| 1011 |
+
|
| 1012 |
+
try:
|
| 1013 |
+
# Create ensemble
|
| 1014 |
+
ensemble = self.ensemble_manager.create_ensemble(individual_models, voting='soft')
|
| 1015 |
+
|
| 1016 |
+
# Fit ensemble
|
| 1017 |
+
X_full_train = np.concatenate([X_train, X_test])
|
| 1018 |
+
y_full_train = np.concatenate([y_train, y_test])
|
| 1019 |
+
|
| 1020 |
+
ensemble.fit(X_train, y_train)
|
| 1021 |
+
|
| 1022 |
+
# Evaluate ensemble
|
| 1023 |
+
ensemble_metrics = self.comprehensive_evaluation(
|
| 1024 |
+
ensemble, X_test, y_test, X_train, y_train
|
| 1025 |
+
)
|
| 1026 |
+
|
| 1027 |
+
# Compare ensemble with individual models
|
| 1028 |
+
ensemble_comparison = self.ensemble_manager.evaluate_ensemble_vs_individuals(
|
| 1029 |
+
ensemble, individual_models, X_test, y_test
|
| 1030 |
+
)
|
| 1031 |
+
|
| 1032 |
+
# Statistical comparison
|
| 1033 |
+
statistical_comparison = self.ensemble_manager.statistical_ensemble_comparison(
|
| 1034 |
+
ensemble, individual_models, X_full_train, y_full_train, self.cv_manager
|
| 1035 |
+
)
|
| 1036 |
+
|
| 1037 |
+
# Store ensemble results
|
| 1038 |
+
results['ensemble'] = {
|
| 1039 |
+
'model': ensemble,
|
| 1040 |
+
'evaluation_metrics': ensemble_metrics,
|
| 1041 |
+
'ensemble_comparison': ensemble_comparison,
|
| 1042 |
+
'statistical_comparison': statistical_comparison,
|
| 1043 |
+
'training_time': datetime.now().isoformat(),
|
| 1044 |
+
'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
|
| 1045 |
+
}
|
| 1046 |
+
|
| 1047 |
+
# Add ensemble to individual models for selection
|
| 1048 |
+
individual_models['ensemble'] = ensemble
|
| 1049 |
+
|
| 1050 |
+
# Log ensemble results
|
| 1051 |
+
ensemble_f1 = ensemble_metrics['f1']
|
| 1052 |
+
ensemble_improvement = ensemble_comparison.get('ensemble_analysis', {}).get('improvement', 0)
|
| 1053 |
+
logger.info(f"Ensemble F1: {ensemble_f1:.4f}, Improvement: {ensemble_improvement:.4f}")
|
| 1054 |
+
|
| 1055 |
+
# Log recommendation
|
| 1056 |
+
recommendation = statistical_comparison.get('ensemble_recommendation', {})
|
| 1057 |
+
if recommendation.get('use_ensemble', False):
|
| 1058 |
+
logger.info(f"✅ Ensemble recommended (confidence: {recommendation.get('confidence', 0):.2f})")
|
| 1059 |
+
else:
|
| 1060 |
+
logger.info(f"❌ Ensemble not recommended")
|
| 1061 |
+
|
| 1062 |
+
except Exception as e:
|
| 1063 |
+
logger.error(f"Ensemble creation failed: {str(e)}")
|
| 1064 |
+
results['ensemble'] = {'error': str(e)}
|
| 1065 |
+
|
| 1066 |
return results
|
| 1067 |
|
| 1068 |
def select_best_model(self, results: Dict) -> Tuple[str, Any, Dict]:
|
| 1069 |
+
"""Select the best performing model based on CV results with ensemble consideration"""
|
| 1070 |
|
| 1071 |
if self.progress_tracker:
|
| 1072 |
self.progress_tracker.update("Selecting best model")
|
|
|
|
| 1076 |
best_score = -1
|
| 1077 |
best_metrics = None
|
| 1078 |
|
| 1079 |
+
# Consider ensemble first if it exists and is recommended
|
| 1080 |
+
if 'ensemble' in results and 'error' not in results['ensemble']:
|
| 1081 |
+
ensemble_result = results['ensemble']
|
| 1082 |
+
statistical_comparison = ensemble_result.get('statistical_comparison', {})
|
| 1083 |
+
recommendation = statistical_comparison.get('ensemble_recommendation', {})
|
| 1084 |
+
|
| 1085 |
+
if recommendation.get('use_ensemble', False):
|
| 1086 |
+
ensemble_metrics = ensemble_result['evaluation_metrics']
|
| 1087 |
+
cv_results = ensemble_metrics.get('cross_validation', {})
|
| 1088 |
+
|
| 1089 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 1090 |
+
f1_score = cv_results['test_scores']['f1']['mean']
|
| 1091 |
+
if f1_score > best_score:
|
| 1092 |
+
best_score = f1_score
|
| 1093 |
+
best_model_name = 'ensemble'
|
| 1094 |
+
best_model = ensemble_result['model']
|
| 1095 |
+
best_metrics = ensemble_metrics
|
| 1096 |
+
logger.info("✅ Ensemble selected as best model")
|
| 1097 |
+
|
| 1098 |
+
# If ensemble not selected, choose best individual model
|
| 1099 |
+
if best_model_name is None:
|
| 1100 |
+
for model_name, result in results.items():
|
| 1101 |
+
if 'error' in result or model_name == 'ensemble':
|
| 1102 |
+
continue
|
| 1103 |
+
|
| 1104 |
+
# Prioritize CV F1 score if available, fallback to test F1
|
| 1105 |
+
cv_results = result['evaluation_metrics'].get('cross_validation', {})
|
| 1106 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 1107 |
+
f1_score = cv_results['test_scores']['f1']['mean']
|
| 1108 |
+
score_type = "CV F1"
|
| 1109 |
+
else:
|
| 1110 |
+
f1_score = result['evaluation_metrics']['f1']
|
| 1111 |
+
score_type = "Test F1"
|
| 1112 |
+
|
| 1113 |
+
if f1_score > best_score:
|
| 1114 |
+
best_score = f1_score
|
| 1115 |
+
best_model_name = model_name
|
| 1116 |
+
best_model = result['model']
|
| 1117 |
+
best_metrics = result['evaluation_metrics']
|
| 1118 |
|
| 1119 |
if best_model_name is None:
|
| 1120 |
raise ValueError("No models trained successfully")
|
| 1121 |
|
| 1122 |
+
score_type = "CV F1" if 'cross_validation' in best_metrics else "Test F1"
|
| 1123 |
logger.info(f"Best model: {best_model_name} with {score_type} score: {best_score:.4f}")
|
| 1124 |
return best_model_name, best_model, best_metrics
|
| 1125 |
|
|
|
|
| 1168 |
}
|
| 1169 |
joblib.dump(enhanced_ref, self.vectorizer_path)
|
| 1170 |
logger.info(f"✅ Saved enhanced features reference to {self.vectorizer_path}")
|
| 1171 |
+
elif model_name == 'ensemble':
|
| 1172 |
+
# Handle ensemble model saving
|
| 1173 |
+
joblib.dump(model, self.model_path)
|
| 1174 |
+
logger.info(f"✅ Saved ensemble model to {self.model_path}")
|
| 1175 |
|
| 1176 |
except Exception as e:
|
| 1177 |
logger.warning(f"Could not save individual components: {e}")
|
|
|
|
| 1186 |
metadata = {
|
| 1187 |
'model_version': f"v1.0_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
| 1188 |
'model_type': model_name,
|
| 1189 |
+
'is_ensemble': model_name == 'ensemble',
|
| 1190 |
'feature_engineering': {
|
| 1191 |
'type': 'enhanced' if self.use_enhanced_features else 'standard',
|
| 1192 |
'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE,
|
|
|
|
| 1206 |
'max_features': self.max_features,
|
| 1207 |
'ngram_range': self.ngram_range,
|
| 1208 |
'feature_selection_k': self.feature_selection_k,
|
| 1209 |
+
'use_enhanced_features': self.use_enhanced_features,
|
| 1210 |
+
'enable_ensemble': self.enable_ensemble
|
| 1211 |
}
|
| 1212 |
}
|
| 1213 |
|
|
|
|
| 1264 |
metadata['cv_accuracy_mean'] = cv_results['test_scores']['accuracy']['mean']
|
| 1265 |
metadata['cv_accuracy_std'] = cv_results['test_scores']['accuracy']['std']
|
| 1266 |
|
| 1267 |
+
# Add ensemble information if applicable
|
| 1268 |
+
if model_name == 'ensemble' and 'ensemble' in results:
|
| 1269 |
+
ensemble_result = results['ensemble']
|
| 1270 |
+
ensemble_comparison = ensemble_result.get('ensemble_comparison', {})
|
| 1271 |
+
statistical_comparison = ensemble_result.get('statistical_comparison', {})
|
| 1272 |
+
|
| 1273 |
+
metadata['ensemble_info'] = {
|
| 1274 |
+
'ensemble_analysis': ensemble_comparison.get('ensemble_analysis', {}),
|
| 1275 |
+
'statistical_recommendation': statistical_comparison.get('ensemble_recommendation', {}),
|
| 1276 |
+
'individual_models': list(ensemble_comparison.keys()) if ensemble_comparison else []
|
| 1277 |
+
}
|
| 1278 |
+
|
| 1279 |
# Add model comparison results if available
|
| 1280 |
if len(results) > 1:
|
| 1281 |
model_comparison = {}
|
|
|
|
| 1304 |
for feature_type, count in feature_metadata.get('feature_types', {}).items():
|
| 1305 |
logger.info(f" {feature_type}: {count}")
|
| 1306 |
|
| 1307 |
+
# Log ensemble information
|
| 1308 |
+
if model_name == 'ensemble':
|
| 1309 |
+
logger.info(f"✅ Ensemble model selected and saved")
|
| 1310 |
+
|
| 1311 |
logger.info(f"✅ Model artifacts saved successfully with {'enhanced' if self.use_enhanced_features else 'standard'} features")
|
| 1312 |
return True
|
| 1313 |
|
|
|
|
| 1322 |
logger.error(f"Failed to save backup pipeline: {str(e2)}")
|
| 1323 |
return False
|
| 1324 |
|
| 1325 |
+
def train_model(self, data_path: str = None, force_enhanced: bool = None, force_ensemble: bool = None) -> Tuple[bool, str]:
|
| 1326 |
+
"""Main training function with LightGBM, enhanced feature engineering, and ensemble voting"""
|
| 1327 |
try:
|
| 1328 |
+
# Override settings if specified
|
| 1329 |
if force_enhanced is not None:
|
| 1330 |
original_setting = self.use_enhanced_features
|
| 1331 |
self.use_enhanced_features = force_enhanced and ENHANCED_FEATURES_AVAILABLE
|
| 1332 |
if force_enhanced and not ENHANCED_FEATURES_AVAILABLE:
|
| 1333 |
logger.warning("Enhanced features requested but not available, using standard features")
|
| 1334 |
|
| 1335 |
+
if force_ensemble is not None:
|
| 1336 |
+
self.enable_ensemble = force_ensemble
|
| 1337 |
+
|
| 1338 |
feature_type = "enhanced" if self.use_enhanced_features else "standard"
|
| 1339 |
+
ensemble_info = "with ensemble" if self.enable_ensemble else "without ensemble"
|
| 1340 |
+
logger.info(f"Starting {feature_type} model training {ensemble_info} including LightGBM...")
|
| 1341 |
|
| 1342 |
# Override data path if provided
|
| 1343 |
if data_path:
|
|
|
|
| 1353 |
len(df),
|
| 1354 |
enable_tuning=True,
|
| 1355 |
cv_folds=self.cv_folds,
|
| 1356 |
+
use_enhanced_features=self.use_enhanced_features,
|
| 1357 |
+
enable_ensemble=self.enable_ensemble
|
| 1358 |
)
|
| 1359 |
|
| 1360 |
print(f"\n📊 Enhanced Training Configuration:")
|
| 1361 |
print(f"Dataset size: {len(df)} samples")
|
| 1362 |
print(f"Feature engineering: {feature_type.title()}")
|
| 1363 |
print(f"Cross-validation folds: {self.cv_folds}")
|
| 1364 |
+
print(f"Models: Logistic Regression, Random Forest, LightGBM")
|
| 1365 |
+
print(f"Ensemble voting: {'Enabled' if self.enable_ensemble else 'Disabled'}")
|
| 1366 |
print(f"Estimated time: {time_estimate['total_formatted']}")
|
|
|
|
| 1367 |
print(f"Hyperparameter tuning: Enabled")
|
| 1368 |
if self.use_enhanced_features:
|
| 1369 |
print(f"Enhanced features: Sentiment, Readability, Entities, Linguistic")
|
| 1370 |
print()
|
| 1371 |
|
| 1372 |
+
# Setup progress tracker (adjusted for LightGBM and ensemble)
|
| 1373 |
base_steps = 4 + (len(self.models) * 3) + 1 # Basic steps
|
| 1374 |
enhanced_steps = 2 if self.use_enhanced_features else 0 # Feature engineering steps
|
| 1375 |
+
ensemble_steps = 3 if self.enable_ensemble else 0 # Ensemble creation and evaluation
|
| 1376 |
+
total_steps = base_steps + enhanced_steps + ensemble_steps
|
| 1377 |
self.progress_tracker = ProgressTracker(total_steps, f"{feature_type.title()} Training Progress")
|
| 1378 |
|
| 1379 |
# Prepare data
|
|
|
|
| 1409 |
if len(X_test) < 1:
|
| 1410 |
return False, "Cannot create test set. Dataset too small."
|
| 1411 |
|
| 1412 |
+
# Train and evaluate models with LightGBM and enhanced features
|
| 1413 |
results = self.train_and_evaluate_models(X_train, X_test, y_train, y_test)
|
| 1414 |
|
| 1415 |
+
# Select best model (could be ensemble)
|
| 1416 |
best_model_name, best_model, best_metrics = self.select_best_model(results)
|
| 1417 |
|
| 1418 |
# Save model artifacts with enhanced feature information
|
|
|
|
| 1422 |
# Finish progress tracking
|
| 1423 |
self.progress_tracker.finish()
|
| 1424 |
|
| 1425 |
+
# Create success message with comprehensive information
|
| 1426 |
cv_results = best_metrics.get('cross_validation', {})
|
| 1427 |
cv_info = ""
|
| 1428 |
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
|
|
|
| 1437 |
if feature_metadata:
|
| 1438 |
total_features = feature_metadata.get('total_features', 0)
|
| 1439 |
feature_info = f", Enhanced Features: {total_features}"
|
| 1440 |
+
|
| 1441 |
+
# Ensemble information
|
| 1442 |
+
ensemble_info = ""
|
| 1443 |
+
if best_model_name == 'ensemble':
|
| 1444 |
+
ensemble_info = " (Ensemble Model Selected)"
|
| 1445 |
|
| 1446 |
success_message = (
|
| 1447 |
+
f"{feature_type.title()} model training completed successfully{ensemble_info}. "
|
| 1448 |
f"Best model: {best_model_name} "
|
| 1449 |
f"(Test F1: {best_metrics['f1']:.4f}, Test Accuracy: {best_metrics['accuracy']:.4f}{cv_info}{feature_info})"
|
| 1450 |
)
|
|
|
|
| 1455 |
except Exception as e:
|
| 1456 |
if self.progress_tracker:
|
| 1457 |
print() # New line after progress bar
|
| 1458 |
+
error_message = f"Enhanced model training with LightGBM failed: {str(e)}"
|
| 1459 |
logger.error(error_message)
|
| 1460 |
return False, error_message
|
| 1461 |
|
| 1462 |
|
| 1463 |
def main():
|
| 1464 |
+
"""Main execution function with LightGBM, enhanced features, and ensemble support"""
|
| 1465 |
import argparse
|
| 1466 |
|
| 1467 |
# Parse command line arguments
|
| 1468 |
+
parser = argparse.ArgumentParser(description='Train fake news detection model with LightGBM and enhanced features')
|
| 1469 |
parser.add_argument('--data_path', type=str, help='Path to training data CSV file')
|
| 1470 |
parser.add_argument('--config_path', type=str, help='Path to training configuration JSON file')
|
| 1471 |
parser.add_argument('--cv_folds', type=int, default=5, help='Number of cross-validation folds')
|
| 1472 |
parser.add_argument('--enhanced_features', action='store_true', help='Force use of enhanced features')
|
| 1473 |
parser.add_argument('--standard_features', action='store_true', help='Force use of standard TF-IDF features only')
|
| 1474 |
+
parser.add_argument('--enable_ensemble', action='store_true', help='Enable ensemble voting')
|
| 1475 |
+
parser.add_argument('--disable_ensemble', action='store_true', help='Disable ensemble voting')
|
| 1476 |
args = parser.parse_args()
|
| 1477 |
|
| 1478 |
# Determine feature engineering mode
|
|
|
|
| 1486 |
use_enhanced = False
|
| 1487 |
logger.info("Standard features explicitly requested")
|
| 1488 |
|
| 1489 |
+
# Determine ensemble mode
|
| 1490 |
+
enable_ensemble = None
|
| 1491 |
+
if args.enable_ensemble and args.disable_ensemble:
|
| 1492 |
+
logger.warning("Both --enable_ensemble and --disable_ensemble specified. Using default.")
|
| 1493 |
+
elif args.enable_ensemble:
|
| 1494 |
+
enable_ensemble = True
|
| 1495 |
+
logger.info("Ensemble voting explicitly enabled")
|
| 1496 |
+
elif args.disable_ensemble:
|
| 1497 |
+
enable_ensemble = False
|
| 1498 |
+
logger.info("Ensemble voting explicitly disabled")
|
| 1499 |
+
|
| 1500 |
+
trainer = EnhancedModelTrainer(
|
| 1501 |
+
use_enhanced_features=use_enhanced,
|
| 1502 |
+
enable_ensemble=enable_ensemble if enable_ensemble is not None else True
|
| 1503 |
+
)
|
| 1504 |
|
| 1505 |
# Apply CV folds from command line
|
| 1506 |
if args.cv_folds:
|
|
|
|
| 1524 |
if 'enhanced_features' in config and use_enhanced is None:
|
| 1525 |
trainer.use_enhanced_features = config['enhanced_features'] and ENHANCED_FEATURES_AVAILABLE
|
| 1526 |
|
| 1527 |
+
# Ensemble configuration
|
| 1528 |
+
if 'enable_ensemble' in config and enable_ensemble is None:
|
| 1529 |
+
trainer.enable_ensemble = config['enable_ensemble']
|
| 1530 |
+
|
| 1531 |
# Filter models if specified
|
| 1532 |
selected_models = config.get('selected_models')
|
| 1533 |
if selected_models and len(selected_models) < len(trainer.models):
|
|
|
|
| 1540 |
logger.info(f"Applied custom configuration with {trainer.cv_folds} CV folds")
|
| 1541 |
if trainer.use_enhanced_features:
|
| 1542 |
logger.info("Enhanced features enabled via configuration")
|
| 1543 |
+
if trainer.enable_ensemble:
|
| 1544 |
+
logger.info("Ensemble voting enabled via configuration")
|
| 1545 |
|
| 1546 |
except Exception as e:
|
| 1547 |
logger.warning(f"Failed to load configuration: {e}, using defaults")
|
|
|
|
| 1561 |
print(f" {feature_type}: {count}")
|
| 1562 |
except Exception as e:
|
| 1563 |
logger.warning(f"Could not display feature summary: {e}")
|
| 1564 |
+
|
| 1565 |
+
# Print model information
|
| 1566 |
+
print(f"\n🎯 Model Information:")
|
| 1567 |
+
print(f"Models trained: {', '.join(trainer.models.keys())}")
|
| 1568 |
+
if trainer.enable_ensemble:
|
| 1569 |
+
print(f"Ensemble voting: Enabled")
|
| 1570 |
+
else:
|
| 1571 |
+
print(f"Ensemble voting: Disabled")
|
| 1572 |
else:
|
| 1573 |
print(f"❌ {message}")
|
| 1574 |
exit(1)
|